• Title/Summary/Keyword: Mixed surfactant

Search Result 198, Processing Time 0.034 seconds

The Dispersion Stability of $\alpha-Fe_2O_3$ Particulate Soil in the Anionic/Nonionic Mixed Surfactant Solution (음/비이온계 혼합계면활성제 용액에서 $\alpha-Fe_2O_3$ 입자의 분산안정성)

  • 정선영;강인숙
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.28 no.6
    • /
    • pp.854-861
    • /
    • 2004
  • To estimate dispersion stability of particles in anionic and nonionic surfactant mixed solution, suspending power was examined as functions of duration time of suspension, ionic and nonionic surfactant mixed ratio, surfactant concentration, kinds of electrolyte, ionic strength and mole numbers of oxyethylene additions to nonionic surfactant using $\alpha$-Fe$_2$O$_3$ particle as the model of particulate soil. The suspending power of anionic and nonionic surfactant mixed solution was relatively higher than that of anionic and nonionic surfactant single solution regardless of solution concentration. The suspending power was gradually decreased with increasing duration time of suspension. In the absence of electrolyte, the effect of surfactant concentration on suspending power was small but in solution with electrolyte, suspending power was lowest at 1 % surfactant concentration. With 1${\times}$10$^{-3}$ ionic strength and polyanionic electrolyte in solution, the suspending power was high but effects of oxyethylene mole number to nonionic surfactant on suspending power was small. Generally the suspending power was gradually increased with decreasing the particle size. Hence the suspending power was inversely related to the particle size.

Synergism effect of mixed surfactant solutions in remediation of soil contaminated with PCE

  • Lee, Dal-Heui
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.47-51
    • /
    • 2004
  • The purpose of this research was to evaluate the effect of mixed surfactant solution for removal of perchloroethylene (PCE) in soil. Ten different surfactant solutions were used in column studies. Mixed surfactant solutions (anionic and nonionic) were most effectively worked in the sandy soil for removal of PCE as a result of synergism between the two types of surfactants. The effectiveness of the mixture of surfactants was 35 % greater than that for the anionic or nonionic surfactant alone. The results indicate that mixed surfactant solution leaching is a promising candidate for the remediation of PCE contaminated sandy soil.

  • PDF

Effects of Mixed Characteristics of Oily Soil on Detergency of PET Fabric in Oily/Particulate Soil Mixed System (지용성/고형오구의 혼합오염계에서 지용성오구의 혼합특성에 따른 PET직물의 세척성)

  • Kang, In-Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.35 no.10
    • /
    • pp.1242-1251
    • /
    • 2011
  • This study investigates the effect of mixed characteristics of oily soil such as mixed ratio, polarity of oily soil on contact angle of fabric, removal of oily and particulate soil from PET fabric in oily/particulate soil mixed system. The contact angle of fabric in the surfactant solution with suspended oily soil was examined as a fundamental environment of detergency of soil from fabrics. Detergency was investigated as function of mixed ratios of oily/ particulate soil, type of oily soil, surfactants concentration, surfactant type and temperature of detergency in surfactant solution. The contact angle of fabric in surfactant solution sharply increased with mixing nonpolar oily soil; in addition, the contact angle slightly increased with increasing contents of oily soil and decreased with increasing surfactant concentration. The removal of oily and particulate soil from fabric was higher in the solution mixed with polar versus nonpolar oily soil. The detergency increased with increasing surfactant concentration and the increased temperature of surfactants solution that were relatively improved in NPE compared to DBS solutions, The results indicated that the detergency of oily and particulate soil showed a similar trend in oily/ particulate mixed soil systems. The general contact angle of fabric was well related with the detergency of oily and particulate soil in oily/particulate mixed soil system, therefore, the primary factor determining the detergency of soil in oily/particulate mixed soil system may be the contact angle of fabric caused by wettability.

Mixed Micellization of Anionic Ammonium Dodecyl Sulfate and

  • Gang, Gye Hong;Kim, Hong Un;Im, Gyeong Hui;Jeong, No Hui
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.9
    • /
    • pp.1009-1014
    • /
    • 2001
  • In aqueous mixtures of cationic OTAC (octadecyl trimethyl ammonium chloride) and anionic ADS (ammonium dodecyl sulfate) surfactants, mixed micelles were formed at low (< 0.2 wt %) total surfactant concentrations. For these mixtures mixed micelliza tion and interaction of surfactant molecules were examined. Mixed critical micelle concentration (CMC), thermodynamic potentials of micellization, and minimum area per surfactant molecule at the interface were obtained from surface tensiometry and electrical conductometry. The mixed micellar compositions and the estimation of interacting forces were determined on the basis of a regular solution model. The CMCs were reduced, although not substantial, and synergistic behavior of the ADS and OTAC in the mixed micelles was observed. The CMC reductions in this anionic/cationic system were comparable to those in nonionic/anionic surfactant systems. The interaction parameter $\beta$ of the regular solution model was estimated to be -5 and this negative value of $\beta$ indicated an overall attractive force in the mixed state.

Detergency of Particulate Soil in Anion/Nonionic Surfactant Mixed Solution (음이온/비이온 혼합 계면활성제 용액에서의 고형오구의 세척성)

  • Kang, In-Sook
    • Fashion & Textile Research Journal
    • /
    • v.13 no.5
    • /
    • pp.790-796
    • /
    • 2011
  • This study was designed to investigate the influence of ratio of anionic/nonionic surfactant mixture on detergency of particulate soil under various solutions. The detergency of the particulate soil was determined by adhesion of particle to fabric and its removal from fabric separately. The PET fabric and ${\alpha}-Fe_2O_3$were used as materials of textile and model of particulate soil, respectively. The detergency was investigated as a function of surfactants concentration, ionic strength, kinds of electrolyte and mole numbers of oxyethylene ether of nonionic surfactant in different ratio of anionic/nonionic surfactant mixture. Although some deviations exist, the adhesion of particle to fabric generally increased with decreasing its removal from fabric. The detergency of particulate soil on PET fabric was relatively higher in anionic/nonionic surfactant mixed solution than in each single surfactant solution, but the influence of ratio of anionic/nonionic surfactant mixture on detergency of particulate soil was low. Generally the detergency of particulate soil on fabric was at its maximum at 0.1% surfactant concentration, $1{\times}10^{-3}$ ionic strength, $Na_5P_3O_{10}$ electrolytes and 10 mole numbers of oxyethylene ether of nonionic surfactant, regardless of ratio of anionic/nonionic surfactant mixture.

Effect of Surfactant on Reductive Dechlorination of Trichloroethylene by Zero-Valent Iron (양이온-비이온 혼합계면활성제의 첨가가 영가철을 이용한 TCE환원에 미치는 영향)

  • Shin, Min-Chul;Choi, Hyun-Dock;Yang, Jung-Seok;Baek, Ki-Tae
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.6
    • /
    • pp.38-45
    • /
    • 2007
  • Trichloroethylene (TCE) is a representative dense non-aqueous phase liquid (DNAPL) and has contaminated substance environments including soil and groundwater due to leakage and careless. DNPAL, has been treated by surfactant-enhanced aquifer remediation (SEAR). After application of SEAR, groundwater contains still surfactant as well as little amount of residual TCE. Permeable reactive barrier using zero-valent iron (ZW) is a very effective technology to treat the residual TCE in groundwater. In this study, the effect of the residual surfactant on the reductive dechlorination of residual TCE was investigated using ZVI. Mixed surfactant composed of nonioinic surfactant and cationic surfactant was used as a residual surfactant because of toxicity and enhancement of dechlorination rate. Structure of surfactant affected significantly the decrhlorination rate of TCE. Mixed surfactant system with relatively short polyethylene oxide (PEO) chain in nonionic surfactant, cationic surfactant did not affect TCE dechlorination rate. However, mixed surfactant system with relatively long PEO chain in nonionic surfactant shows that TCE dechlorination rate was significantly dependent on fraction of cationic surfactant and HLB of nonionic surfactant. Cationic surfactant with trimethyl ammonium group enhanced reductive dechlorination rate compared to that surfactant with pyridinium group.

Study on the Solubilization of 4-ethylaniline in the aqueous solutions of mixed surfactants (혼합계면활성제의 수용액에서 4-ethylaniline의 가용화에 관한 연구)

  • Lee, Dong-Cheol;Lee, Byung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.438-447
    • /
    • 2020
  • The critical micelle concentration (CMC) values of the mixed surfactant systems and the solubilization conatant (Ks) values of 4-ethylaniline in those solutions were measured and analyzed by the UV-Vis method. As a result, the mixed surfactant systems of TTAB/LSB and TTAB/TX-100 did not deviate significantly from ideal mixed micellization. However, the mixed systems of SDS/LSB and SDS/TX-100 showed great negative deviations from ideal mixed model. These differences showed that the intensity of the interaction between two components in the mixed micelle was different for each mixed system and that these differences greatly influenced the solubilization of 4-ethylaniline by a mixed surfactant system. Among pure surfactants, an anionic surfactant such as SDS showed a greater Ks value than other ionic surfactants, and the Ks value by each surfactant system decreased in the order of SDS≫TTAB≧LSB>TX-100. In addition, the Ks values of all the mixed surfactant systems were higher than those of the pure surfactants constituting the mixed systems.

Phase Behavior and Spontaneous Vesicle Formation in Aqueous Solutions of Anionic Ammonium Dodecyl Sulfate and Cationic Octadecyl Trimethyl Ammonium Chloride Surfactants

  • Kang, Kye-Hong;Kim, Hong-Un;Lim, Kyung-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.4
    • /
    • pp.667-674
    • /
    • 2007
  • Phase behavior for the mixed aqueous surfactant systems of cationic octadecyl trimethyl ammonium chloride (OTAC)/anionic ammonium dodecyl sulfate (ADS)/water was examined. Below the total surfactant concentrations of 1.5 m molal, mixed micelles were formed. At the total surfactant concentrations higher than 1.5 m molal, there appeared a region where mixed micelles and vesicles coexist. As the surfactant concentration increased, the systems looked very turbid and much more vesicles were observed. The vesicles were spontaneously formed in this system and their existence was observed by negative-staining transmission electron microscopy (TEM), small-angle neutron scattering (SANS) and encapsulation efficiency of dye. The vesicle region was where the molar fraction α of ADS to the total mixed surfactant was from 0.1 to 0.7 and the total surfactant concentration was above 5 × 10-4 molality. The size and structure of the vesicles were determined from the TEM microphotographs and the SANS data. Their diameter ranged from 450 nm to 120μm and decreased with increasing total surfactant concentration. The lamellar thickness also decreased from 15 nm to 5 nm with increasing surfactant concentration and this may be responsible for the decrease in vesicle size with the surfactant concentration. The stability of vesicles was examined by UV spectroscopy and zeta potentiometry. The vesicles displayed long-term stability, as UV absorbance spectra remained unchanged over two months. The zeta potentials of the vesicles were large in magnitude (40-70 mV) and the observed longterm stability of the vesicles may be attributed to such high ζ potentials.

Synthesis and Evaluation of N-(2,3-dihydroxypropyl)-N,N-dimethyldodecane-1-amine chloride (N-(2,3-dihydroxypropyl)-N,N-dimethyldodecane-1-amine chloride의 합성과 평가)

  • Cho, Wan-Goo;Choi, Jeong-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.23-31
    • /
    • 2008
  • In general, anionic and cationic surfactants are incompatible because their mixtures form insoluble complexes. There are, however, some complexes that are soluble and behave like regular surfactants, specifically like nonionic surfactants, thus named pseudo-nonionic surfactant complexes. Pseudo-nonionic complexes are more effective and efficient than their ionic surfactant components as shown by their equilibrium and dynamic surface tensions and interfacial tensions. They pack at the interface more than their ionic components. Since, pseudo-nonionic complexes show their own characteristics, they can be treated as separate classes of surfactants distinct from ionic and nonionic surfactants. Novel cationic surfactant was synthesized, having the polyhydroxyl group at the head group. We found that aqueous mixtures of our cationic surfactant and usual anionic surfactant(SDS) could form homogeneous solutions even at high concentration. The properties of mixed surfactant solutions were measured. Foam stability, CMC(critical micelle concentration), water hardness tolerance and thickening effect were tested. The foam stability of mixed surfactants was very good and various synergy effects were observed.

Effect of Fatty Acid and Non-ionic Surfactant on the Deinkability of Mixed Recovered Paper (혼합폐지의 탈묵효율에 미치는 지방산과 비이온성 계면활성제의 영향)

  • Seo, Jin Ho;Choi, Do Chim;Ryu, Jeong Yong;Chung, Sung Hyun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.2
    • /
    • pp.34-41
    • /
    • 2015
  • Recovered paper has been widely used as a main raw material of papermaking in Korea. Recycling of recovered paper helps to reduce production cost and preserve an environment. To recycle recovered paper efficiently, de-inking is a key process in recycling mills. De-inking process would be affected by various influencing factors such as the type of de-inking agent, mixed ratio of recovered paper, season, and process conditions. In this study, fatty acid and nonionic surfactant were used as the de-inking agent in froth-flotation process of mixed recovered paper. De-inking properties of mixed recovered paper were investigated according to the addition level of each chemical. Nonionic surfactant had a small effect on de-inking efficiency of mixed recovered paper due to decreased reject. As the additional level of fatty acid increases, fragmented ink particles increased and then optical properties of recycled paper decreased because fragmented ink particles adsorbed onto the fiber surface.