• 제목/요약/키워드: Mixed-conducting ceramics

검색결과 3건 처리시간 0.019초

Connectivity and Electrical Conductivity of YSZ-NiO Composite

  • Park, Young-Min;Park, Gyeong-Man
    • The Korean Journal of Ceramics
    • /
    • 제4권2호
    • /
    • pp.141-145
    • /
    • 1998
  • The electrical properties of the mixed conducting yttria(8 mol%) stabilized zirconia(YSZ)-nickel oxide(NiO) composites were examined by a.c. impedance, 4-probe d.c. conductivity between 400 and $1000^{\circ}C$. The oxygen partial pressure dependence of conductivity, and electromotive force measurement of galvanic cell enabled to determine the electronic contribution to the conduction. Up to 6 vol% NiO addition, the conductivity decreased since the electronic NiO acted as an insulator in ionic matrix. However the ionic transport was dominant until NiO content reaches 26 vol%. Mixed conduction was observed between 26 and 68 vol% of NiO. The effect of composition on the electrical property was explained by the microstructure and thus by the distribution of two phases.

  • PDF

에어로졸 증착법[aerosol depostion method]에 의한 $Ba[Ce_{0.9}Y_{0.1}]O_{3-\delta}$ - Ni 수소분리막 제조 ($Ba[Ce_{0.9}Y_{0.1}]O_{3-\delta}$ - Ni Composite Membrane for Hydrogen Separation by Aerosol Deposition Method)

  • 박영수;변명섭;최진섭;김진호;황광택
    • 한국수소및신에너지학회논문집
    • /
    • 제21권2호
    • /
    • pp.117-122
    • /
    • 2010
  • BCY($Ba(Ce_{0.9}Y_{0.1})O_{3-\delta}$) oxide, shows high protonic conductivity at high temperatures, and are referred to as hydrogen separation membrane. For high efficiency of hydrogen separation ($H_2$ flux and selectivity) and low fabrication cost, ultimate thin and dense BCY-Ni layer have to be coated on a porous substrate such as $ZrO_2$. Aerosol depostion (AD) process is a novel technique to grow ceramic film with high density and nano-crystal structure at room-temperature, and would be applied to the fabrication process of AD integration ceramic layer effectively. XRD and SEM measurements were conducted in order to analyze the characteristics of BCY-Ni membrane fabricated by AD process.

실버 나노분말을 이용한 메탈메쉬용 페이스트의 충전 및 와이핑 특성 (Filling and Wiping Properties of Silver Nano Paste in Trench Layer of Metal Mesh Type Transparent Conducting Electrode Films for Touch Screen Panel Application)

  • 김기동;남현민;양상선;박이순;남수용
    • 한국분말재료학회지
    • /
    • 제24권6호
    • /
    • pp.464-471
    • /
    • 2017
  • A metal mesh TCE film is fabricated using a series of processes such as UV imprinting of a transparent trench pattern (with a width of $2-5{\mu}m$) onto a PET film, filling it with silver paste, wiping of the surface, and heat-curing the silver paste. In this work nanosized (40-50 nm) silver particles are synthesized and mixed with submicron (250-300 nm)-sized silver particles to prepare silver paste for the fabrication of metal mesh-type TCE films. The filling of these silver pastes into the patterned trench layer is examined using a specially designed filling machine and the rheological testing of the silver pastes. The wiping of the trench layer surface to remove any residual silver paste or particles is tested with various mixture solvents, and ethyl cellosolve acetate (ECA):DI water = 90:10 wt% is found to give the best result. The silver paste with 40-50 nm Ag:250-300 nm Ag in a 10:90 wt% mixture gives the highest electrical conductance. The metal mesh TCE film obtained with this silver paste in an optimized process exhibits a light transmittance of 90.4% and haze at 1.2%, which is suitable for TSP application.