• Title/Summary/Keyword: Mixing ventilation

Search Result 45, Processing Time 0.029 seconds

Analysis of Ventilation Performance Using a Model Chamber

  • Kang Tae-Wook;Chang Tae-Hyeon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.7
    • /
    • pp.736-743
    • /
    • 2005
  • In this study, three different types of mechanical ventilation systems are compared based on their ventilation characteristics: tracer gas concentration decay characteristics, and ventilation effectiveness by calculating actual ventilation air flow rate. The experiments are performed by using a step-down method for measuring tracer gas. $CO_{2}$ gas, concentration in the model chamber. Application of a mixing factor, k, was used and measured values ranged from 0.68 to 0.77. The Type 2 ventilation system was found to have the highest ventilation effectiveness rather than the Types 1 and 3.

Experimental Study on Removal Characteristics of Indoor Suspended Particulates by Ventilation. (환기에 의한 실내 부유오염입자 제거특성에 관한 실험적 연구)

  • Kang, Tae-Wook
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.4
    • /
    • pp.133-139
    • /
    • 2005
  • In this paper, the ventilation performance of suspended particulates in indoor side was investigated by step-down method. Experiments were performed in function of mechanical ventilation types and locations of supply and extract air. The type 2 ventilation system shows the highest removal characteristics rather than other 2 types. It means that the displacement ventilation has also good decay rates of concentration compared to mixing ventilation.

Thermal environment evaluation of KBS open hall with mixing ventilation and downward displacement ventilation systems (혼합환기와 하향 압출환기시스템이 동반된 KBS공개홀의 온열환경 평가)

  • 권용일;권순석
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.2
    • /
    • pp.147-154
    • /
    • 1998
  • This study was carried out for evaluating the interior thermal environment in KBS Open hall with large ceiling height and large space. Ventilation systems of KBS Open hall have combined mixing ventilation and downward displacement ventilation system. Temperature and velocity was measured 130 locations with low level(0.1m), mid level(0.6m) and high level(1.1m). But relative humidity was measured at 15 locations. The subjective thermal sensation was made an inquiry of occupancy at the location measured physical elements.

  • PDF

A Study on Ventilation Effectiveness in the Non-isothermal Supply using Mixing and Displacement Ventilation Systems (비등온 급기조건에서 환기방식에 따른 환기효율 특성에 관한 연구)

  • 이재근;강태욱;윤석구;구재현;한정균;조민철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.8
    • /
    • pp.739-745
    • /
    • 2001
  • The objective of this research is to analyze the ventilation effectiveness in the non-isothermal air supply using mixing and displacement ventilation systems for indoor air quality control and management. In this study, a ventilation effectiveness is evaluated in a simplified model chamber using a tracer gas technique of $CO^2$ gas injected into a supply duct as a function of ventilation rates, supply/extract sites and cooling/heating air supply. The ventilation effectiveness decreased with increasing ventilation rate on the cooling and heating conditions. And the ventilation effectiveness of case 3 (down supply and upper extract) was better thant that of case 1(upper supply and upper extract) and case 2(upper supply and down extract) with the cooling supply conditions. but for the heating supply air conditions, the ventilation effectiveness of case 2 was better than that of case 3 and case 1.

  • PDF

An Experimental Study for the Improvement of Ventilation Conditions and Effectiveness in the Manufacturing Industry by Increasing the Mixing Factor (K-Factor) (혼합계수(K-Factor) 증가에 따른 사업장의 환기 조건 및 효율 개선에 관한 연구)

  • Lee, Yun-ho;Lee, Seokwon;Lee, Kyoungho;Kim, Hyunwook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.3
    • /
    • pp.343-350
    • /
    • 2019
  • Objectives: This study aims to identify whether ventilation conditions and their effectiveness can be significantly improved in an experimental chamber by increasing the mixing factor (K-Factor). Methods: In a chamber with a volume of $1m^3$, air velocity was measured at six different points with four roof fans in the upper part of the chamber being operated in order. The impact of the ventilation conditions was analyzed when the flow rates were increasing and the first inlet of the chamber was either open or closed. Smoke patterns were also observed at four corner points where ventilation was limited. Kruskal Wallis and Mann-Whitney tests were performed to compare air velocities measured in the chamber. Results: The air velocities measured at only the third point increased significantly from $0.03{\pm}0.03m/s$ (door open) and $0.05{\pm}0.06m/s$ (door closed) with two fans, $0.08{\pm}0.08m/s$ with three fans, and $0.09{\pm}0.09m/s$ with four fans operating (p<0.05). However, air velocities at the four corner points did not significantly increase. Smoke patters also showed that the open inlet of the chamber had no effect on improvement of ventilation conditions and effectiveness. Conclusions: In this study, the air velocities at six points in the chamber did not significantly increase despite the increase in the mixing factor and flow rates of ventilation in the controlled environment. Therefore, the inflow of outdoor air throughout an open inlet and installation of a forced ventilation system can potentially increase the indoor air velocity and improve ventilation condition without an increase in the mixing factor.

Development of an Ejector System for the Engine-Bay Ventilation (엔진베이 환기용 이젝터시스템 개발)

  • Im, Juhyun;Kim, Yeongryeon;Jun, Sangin;Jang, Seongho;Lee, Sanghyo
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.1
    • /
    • pp.30-35
    • /
    • 2014
  • This study has been conducted to develop an ejector system applied in the aircraft engine-bay ventilation system. Tandem-Ejector was selected as a component of ventilation system because it could achieve high ventilation performance in spite of motive flow with small flow rate. Tandem-Ejector is composed of a primary nozzle and two mixing ducts ($1^{st}$ mixing duct and $2^{nd}$ mixing duct). In this study, 1-D Tandem-Ejector model has been built with conservation laws and isentropic relation for 1-D ejector sizing and performance prediction. Computational Fluid Dynamics(CFD) has been conducted to investigate ejector performance and flow characteristics in the ejector. Also, Tandem-Ejector performance tests have been conducted to obtain ejector pumping performance and to investigate stand-off (gap between primary nozzle and $1^{st}$ mixing duct inlet) effect on ejector pumping performance.

Evaluation of Ventilation Rate and External Air Mixing Ratio in Semi-closed Loop Ventilation System of Pig House Considering Pressure Loss (압력손실을 고려한 양돈시설의 반폐회로 환기시스템의 환기량 및 혼합비율 평가)

  • Park You-me;Kim Rack-woo;Kim Jun-gyu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.1
    • /
    • pp.61-72
    • /
    • 2023
  • The increase in the rearing intensity of pigs has caused deterioration in the pig house's internal environment such as temperature, humidity, ammonia gas, and so on. Traditionally, the widely used method to control the internal environment was through the manipulation of the ventilation system. However, the conventional ventilation system had a limitation to control the internal environment, prevent livestock disease, save energy, and reduce odor emission. To overcome this problem, the air-recirculated ventilation system was suggested. This system has a semi-closed loop ventilation type. For designing this system, it was essential to evaluate the ventilation rates considering the pressure loss of ducts. Therefore, in this study, pressure loss calculation and experiment were conducted for the quantitative ventilation design of a semi-closed loop system. The results of the experiment showed that the inlet through which external air flows should always be opened. In addition, it was also found that for the optimum design of the semi-closed loop ventilation system, it was appropriate to install a damper or a backflow prevention device rather than a ventilation fan.

분배계통에 따른 지하주차장 환기설비 성능의 예측

  • 김경환;이재헌;오명도;김종필
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.10
    • /
    • pp.982-992
    • /
    • 2001
  • In this paper, the performance of ventilation equipments in enclosed parking garages were investigated for several air distribution systems by numerical method. Air change effectiveness of the non-mixing system was 0.42. It meant that more supply air as much as the design supply air was needed to maintain good indoor air quality. In the high speed nozzle ventilating system which is most expensive one, air change effectiveness was 0.54. Therefore this system satisfied to ventilation design. In the jet fan ventilating systems, air change effectiveness for jet fan ventilating system-A with 18 jet fans and jet fan ventilating system-B with 6 jet fans in circulation mixing arrangement were 0.565 and 0.42 respectively. Jet fan ventilating system-C with 6 jet fans in transport mixing arrangement was 0.535. Jet fan ventilating system-A and jet fan ventilating system-C met the ventilation design. But velocity in jet fan ventilating system-A was over 2.0m/s which is inappropriate in human comfort. Therefore this system is not proper to ventilation. Jet fan ventilating system-C was the optimum one for enclosed parking garages among 5 systems examined in this paper.

  • PDF

Numerical Analysis on the Improvement of Fume Mixing Ratio in the Push-Pull Local Ventilation System (급기-흡기 국소환기시스템의 성능개선에 관한 수치해석)

  • Yi, Chung-Seob;Suh, Jeong-Se;Yoon, Ji-Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.12
    • /
    • pp.867-872
    • /
    • 2010
  • Numerical analysis has been conducted to investigate the fluid flow and fume mixing ratio characteristics of scattering fume in a push-pull ventilation system and optimally improve the flow patterns of scattering fume in the existing ventilation system. This ventilation system has been simulated by using commercial CFD code. In the case of the existing system, although the air is sprayed from air-curtain to prevent the fume from being scattered in upper hood, the improved air supply hood can remove the fume from the wide area in the high pressure. It is verified that the deeper plating storage is more advantageous. Also, by installing the shied around the plating storage, the scattering of the fume to the atmosphere was prevented effectively by surrounding flux.

Numerical Analysis of Ventilation Effectiveness using Turbulent Airflow Modeling (난류유동해석을 통한 환기효율의 수치해석적 연구)

  • Han, H.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.4
    • /
    • pp.253-262
    • /
    • 1992
  • A numerical procedure is introduced to calculate local ventilation effectiveness using the definitions of local decay rate and local mean age. A low Reynolds number $k-{\varepsilon}$ model is implemented to calculate steady state turbulent velocity distributions, and a step-down method is used to calculate transient concentration distributions. Simulations are carried out for several different values of air change rates and several different diffuser angles in a two-dimensional model of a half scale office room. The results show that the local ventilation effectiveness within a room could vary significantly from one location to another. The nominal air change rate based on the assumption of complete mixing of room air does not provide the local ventilation effectiveness information. It is numerically proved that the local mean age distribution obtained from the transient calculation is equivalent to the steady state concentration distribution with homogeneously distributed contaminant sources.

  • PDF