• Title/Summary/Keyword: Modal Strain Energy Method

Search Result 73, Processing Time 0.027 seconds

Damage detection in jacket type offshore platforms using modal strain energy

  • Asgarian, B.;Amiri, M.;Ghafooripour, A.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.3
    • /
    • pp.325-337
    • /
    • 2009
  • Structural damage detection, damage localization and severity estimation of jacket platforms, based on calculating modal strain energy is presented in this paper. In the structure, damage often causes a loss of stiffness in some elements, so modal parameters; mode shapes and natural frequencies, in the damaged structure are different from the undamaged state. Geometrical location of damage is detected by computing modal strain energy change ratio (MSECR) for each structural element, which elements with higher MSECR are suspected to be damaged. For each suspected damaged element, by computing cross-modal strain energy (CMSE), damage severity as the stiffness reduction factor -that represented the ratios between the element stiffness changes to the undamaged element stiffness- is estimated. Numerical studies are demonstrated for a three dimensional, single bay, four stories frame of the existing jacket platform, based on the synthetic data that generated from finite element model. It is observed that this method can be used for damage detection of this kind of structures.

Vibration-based damage detection in beams using genetic algorithm

  • Kim, Jeong-Tae;Park, Jae-Hyung;Yoon, Han-Sam;Yi, Jin-Hak
    • Smart Structures and Systems
    • /
    • v.3 no.3
    • /
    • pp.263-280
    • /
    • 2007
  • In this paper, an improved GA-based damage detection algorithm using a set of combined modal features is proposed. Firstly, a new GA-based damage detection algorithm is formulated for beam-type structures. A schematic of the GA-based damage detection algorithm is designed and objective functions using several modal features are selected for the algorithm. Secondly, experimental modal tests are performed on free-free beams. Modal features such as natural frequency, mode shape, and modal strain energy are experimentally measured before and after damage in the test beams. Finally, damage detection exercises are performed on the test beam to evaluate the feasibility of the proposed method. Experimental results show that the damage detection is the most accurate when frequency changes combined with modal strain-energy changes are used as the modal features for the proposed method.

Modal Strain Energy-based Damage Detection in Beam Structures using Three Different Sensor Types (보구조물의 모드변형에너지기반 손상 검색: 3가지 타입 센서의 비교)

  • Ho, Duc-Duy;Hong, Dong-Soo;Kim, Jeong-Tae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.680-683
    • /
    • 2011
  • This study deals with damage detection in beam structure by using modal strain energy-based technique with three different sensor types: accelerometer, lead zirconate titanate (PZT) piezoelectric sensor and electrical strain gage. First, the use of direct piezoelectric effect of PZT sensor for dynamic strain response are presented. Next, a modal strain energy-based damage detection method is outlined. For validation, forced vibration tests are carried out on lab-scale aluminum cantilever beam. The dynamic responses are measured for several damage scenarios. Based on damage localization results, the performance of three different sensor types is evaluated.

  • PDF

Results and implications of the damage index method applied to a multi-span continuous segmental prestressed concrete bridge

  • Wang, Ming L.;Xu, Fan L.;Lloyd, George M.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.1
    • /
    • pp.37-51
    • /
    • 2000
  • Identification of damage location based on modal measurement is an important problem in structural health monitoring. The damage index method that attempts to evaluate the changes in modal strain energy distribution has been found to be effective under certain circumstances. In this paper two damage index methods using bending strain energy and shear strain energy have been evaluated for numerous cases at different locations and degrees of damage. The objective is to evaluate the feasibility of the damage index method to localize the damage on large span concrete bridge. Finite element models were used as the test structures. Finally this method was used to predict the damage location in an actual structure, using the results of a modal survey from a large concrete bridge.

Damage identification of structures by reduction of dynamic matrices using the modified modal strain energy method

  • Arefi, Shahin Lale;Gholizad, Amin
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.2
    • /
    • pp.125-147
    • /
    • 2020
  • Damage detection of structures is one of the most important topics in structural health monitoring. In practice, the response is not available at all structural degrees of freedom, and due to the installation of sensors at some degrees of freedom, responses exist only in limited number of degrees of freedom. This paper is investigated the damage detection of structures by applying two approaches, AllDOF and Dynamic Condensation Method (DCM), based on the Modified Modal Strain Energy Method (MMSEBI). In the AllDOF method, mode shapes in all degrees of freedom is available, but in the DCM the mode shapes only in some degrees of freedom are available. Therefore by methods like the DCM, mode shapes are obtained in slave degrees of freedom. So, in the first step, the responses at slave degrees of freedom extracted using the responses at master degrees of freedom. Then, using the reconstructed mode shape and obtaining the modified modal strain energy, the damages are detected. Two standard examples are used in different damage cases to evaluate the accuracy of the mentioned method. The results showed the capability of the DCM is acceptable for low mode shapes to detect the damage in structures. By increasing the number of modes, the AllDOF method identifies the locations of the damage more accurately.

3D Shape Comparison Using Modal Strain Energy (모달 스트레인 에너지를 이용한 3차원 형상 비교)

  • 최수미
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.3
    • /
    • pp.427-437
    • /
    • 2004
  • Shape comparison between 3D models is essential for shape recognition, retrieval, classification, etc. In this paper, we propose a method for comparing 3D shapes, which is invariant under translation, rotation and scaling of models and is robust to non-uniformly distributed and incomplete data sets. first, a modal model is constructed from input data using vibration modes and then shape similarity is evaluated with modal strain energy. The proposed method provides global-to-local ordering of shape deformation using vibration modes ordered by frequency Thus, we evaluated similarity in terms of global properties of shape without being affected localised shape features using ordered shape representation and modal strain one energy.

  • PDF

An improved modal strain energy method for structural damage detection, 2D simulation

  • Moradipour, Parviz;Chan, Tommy H.T.;Gallag, Chaminda
    • Structural Engineering and Mechanics
    • /
    • v.54 no.1
    • /
    • pp.105-119
    • /
    • 2015
  • Structural damage detection using modal strain energy (MSE) is one of the most efficient and reliable structural health monitoring techniques. However, some of the existing MSE methods have been validated for special types of structures such as beams or steel truss bridges which demands improving the available methods. The purpose of this study is to improve an efficient modal strain energy method to detect and quantify the damage in complex structures at early stage of formation. In this paper, a modal strain energy method was mathematically developed and then numerically applied to a fixed-end beam and a three-story frame including single and multiple damage scenarios in absence and presence of up to five per cent noise. For each damage scenario, all mode shapes and natural frequencies of intact structures and the first five mode shapes of assumed damaged structures were obtained using STRAND7. The derived mode shapes of each intact and damaged structure at any damage scenario were then separately used in the improved formulation using MATLAB to detect the location and quantify the severity of damage as compared to those obtained from previous method. It was found that the improved method is more accurate, efficient and convergent than its predecessors. The outcomes of this study can be safely and inexpensively used for structural health monitoring to minimize the loss of lives and property by identifying the unforeseen structural damages.

Estimation of semi-rigid joints by cross modal strain energy method

  • Wang, Shuqing;Zhang, Min;Liu, Fushun
    • Structural Engineering and Mechanics
    • /
    • v.47 no.6
    • /
    • pp.757-771
    • /
    • 2013
  • We present a semi-rigid connection estimation method by using cross modal strain energy method. While rigid or pinned assumptions are adopted for steel frames in traditional modeling via finite element method, the actual behavior of the connections is usually neither. Semi-rigid joints enable connections to be modeled as partially restrained, which improves the quality of the model. To identify the connection stiffness and update the FE model, a newly-developed cross modal strain energy (CMSE) method is extended to incorporate the connection stiffness estimation. Meanwhile, the relations between the correction coefficients for the CMSE method are derived, which enables less modal information to be used in the estimation procedure. To illustrate the capability of the proposed parameter estimation algorithm, a four-story frame structure is demonstrated in the numerical studies. Several cases, including Semi-rigid joint(s) on single connection and on multi-connections, without and with measurement noise, are investigated. Numerical results indicate that an excellent updating is achievable and the connection stiffness can be estimated by CMSE method.

Feasibility study on model-based damage detection in shear frames using pseudo modal strain energy

  • Dehcheshmeh, M. Mohamadi;Hosseinzadeh, A. Zare;Amiri, G. Ghodrati
    • Smart Structures and Systems
    • /
    • v.25 no.1
    • /
    • pp.47-56
    • /
    • 2020
  • This paper proposes a model-based approach for structural damage identification and quantification. Using pseudo modal strain energy and mode shape vectors, a damage-sensitive objective function is introduced which is suitable for damage estimation and quantification in shear frames. Whale optimization algorithm (WOA) is used to solve the problem and report the optimal solution as damage detection results. To illustrate the capability of the proposed method, a numerical example of a shear frame under different damage patterns is studied in both ideal and noisy cases. Furthermore, the performance of the WOA is compared with particle swarm optimization algorithm, as one the widely-used optimization techniques. The applicability of the method is also experimentally investigated by studying a six-story shear frame tested on a shake table. Based on the obtained results, the proposed method is able to assess the health of the shear building structures with high level of accuracy.

Damage detection in truss bridges using vibration based multi-criteria approach

  • Shih, H.W.;Thambiratnam, D.P.;Chan, T.H.T.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.2
    • /
    • pp.187-206
    • /
    • 2011
  • This paper uses dynamic computer simulation techniques to develop and apply a multi-criteria procedure using non-destructive vibration-based parameters for damage assessment in truss bridges. In addition to changes in natural frequencies, this procedure incorporates two parameters, namely the modal flexibility and the modal strain energy. Using the numerically simulated modal data obtained through finite element analysis of the healthy and damaged bridge models, algorithms based on modal flexibility and modal strain energy changes before and after damage are obtained and used as the indices for the assessment of structural health state. The application of the two proposed parameters to truss-type structures is limited in the literature. The proposed multi-criteria based damage assessment procedure is therefore developed and applied to truss bridges. The application of the approach is demonstrated through numerical simulation studies of a single-span simply supported truss bridge with eight damage scenarios corresponding to different types of deck and truss damage. Results show that the proposed multi-criteria method is effective in damage assessment in this type of bridge superstructure.