• Title/Summary/Keyword: Mode II

Search Result 744, Processing Time 0.038 seconds

Fatigue crack propagation of buried pipe steel under mixed model loading (혼합모드하중을 받는 매석배관강의 피로균열전파 거동)

  • 이억섭;최용길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.473-476
    • /
    • 2000
  • Recently, many studies focus on mixed-mode fatigue-fracture characteristics of characteristics of materials. In order to reveal crack initiation and propagation mechanisms in combined -mode fatigue. This paper investigates the initiation and propagation behavior of the fatigue crack of the STS304 specimens under mixed mode loading conditions. moreover crack arrest and branch phenomena were analyzed with respect to the change do the angle of inclined loading. The relationship between the angle of inclined loading and the angle of branched crack was studied. A greate number of cycles are necessary to initiate a new crack from the initial crack. The direction of the new crack propagation is determined by MTS theory.

  • PDF

Behaviour of Fatigue Crack Propagation under Mixed Mode(I+II) with variation of Crack Length (혼합모드(I+II)하에서 균열길이 변화에 따른 피로균열 전파 거동)

  • Jeong, Eui-Hyo;Hur, Bang-Soo;Kwon, Yun-Ki;Oh, Taek-Yul
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.182-187
    • /
    • 2000
  • The application of fracture mechanics have traditionally concentrated on cracks leaded by tensile stresses, and growing under an opening or mode I mechanism. However, many cases of failures occur from growth of cracks subjected to mixed mode loading. Several criteria have been proposed regarding the crack growth direction under mixed mode loadings. This paper is aimed at prediction of fatigue crack growth behaviour under mixed mode(I+II) in two dimensional branched type precrack. In this paper, the maximum tangential stress(MTS) criterion was used to predict crack growth direction. Not only experiment but also finite element analysis(FEA) was carried out. The theoretical predictions were compared with experimental results in this paper

  • PDF

Performance Efficiency of Compound CVTs with a 2K-H II (2K-H II 형식 복합형 무단변속기의 효율실험)

  • Park J.M.;Kim Y.S.;Lee S.H.;Choi S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.670-673
    • /
    • 2005
  • We designed the compound CVT (Continuously Variable Transmissions) by combining power circulation mode CVT and power split mode CVT, which have been proposed for connecting 2K-H II differential gear to the V- belt type CVU (Continuously Variable Unit), as an input coupled type. With the designed compound CVT, we carried out theoretical analysis and performance experiments. We proved that the compound CVT had a better performance than either of the power circulation mode or power split mode.

  • PDF

An elliptical fracture criterion for mixed mode fracture I+II emanating from notches

  • El Minor, H.;Pluvinage, G.;Azari, Z.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.1
    • /
    • pp.87-97
    • /
    • 2007
  • Some mixed mode fracture criterion may be converted in to elliptical or ellipsoidal formula with the aid of mathematical translation. Hence, the crack initiation in mixed mode fracture I+II emanating from notches, has been studied using notched circular ring specimens. On the basis of Irwin (1957) theory, a new criteria in mixed mode fracture I+II, based fracture elliptic criterion and notch stress intensity factors has been developed.

Modeling and designing intelligent adaptive sliding mode controller for an Eight-Rotor MAV

  • Chen, Xiang-Jian;Li, Di
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.172-182
    • /
    • 2013
  • This paper focuses on the modeling and intelligent control of the new Eight-Rotor MAV, which is used to solve the problem of the low coefficient proportion between lift and gravity for the Quadrotor MAV. The Eight-Rotor MAV is a nonlinear plant, so that it is difficult to obtain stable control, due to uncertainties. The purpose of this paper is to propose a robust, stable attitude control strategy for the Eight-Rotor MAV, to accommodate system uncertainties, variations, and external disturbances. First, an interval type-II fuzzy neural network is employed to approximate the nonlinearity function and uncertainty functions in the dynamic model of the Eight-Rotor MAV. Then, the parameters of the interval type-II fuzzy neural network and gain of sliding mode control can be tuned on-line by adaptive laws based on the Lyapunov synthesis approach, and the Lyapunov stability theorem has been used to testify the asymptotic stability of the closed-loop system. The validity of the proposed control method has been verified in the Eight-Rotor MAV through real-time experiments. The experimental results show that the performance of the interval type-II fuzzy neural network based adaptive sliding mode controller could guarantee the Eight-Rotor MAV control system good performances under uncertainties, variations, and external disturbances. This controller is significantly improved, compared with the conventional adaptive sliding mode controller, and the type-I fuzzy neural network based sliding mode controller.

Effect of non-woven tissues on interlaminar fracture toughness of composite laminate (부직포가 복합적층판의 층간파괴인성에 미치는 효과)

  • 김영배;정성균;강진식;김태형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.110-114
    • /
    • 2000
  • The Interlaminar fracture behavior of hybrid composite with non-woven carbon tissue was investigated under Mode I (DCB) and Mode II (ENF) loading condition. Hybrid composites were manufactured by means of inserting a non-woven tissue between prepreg layers. Two kinds of specimens were prepared from [0]$_{24}$ and [$0_{12}/0_{12}$]. Where, the symbol "/" means that a non-woven carbon tissue was located at 0/0 mid-plane of the specimen. The interlaminar fracture toughness of hybrid composites was compared with that of CFRP. The fracture surfaces of the specimens were observed using optical microscope and SEM, and the failure mechanism was discussed. The hybrid laminates, which are made by inserting non-woven carbon tissue between layers, were shown to be effective to remarkably improve Mode II fracture toughness.toughness.

  • PDF

The Characteristics of Fatigue Crack Propagation Behavior in Shear Load (전단하중 하의 피로균열 전파거동의 특징)

  • Lee, Jeong-Moo;Song, Sam-Hong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.302-307
    • /
    • 2004
  • This paper reviewed characteristics of fatigue crack behavior observed by changing various shapes of initial crack and magnitudes of loading in compact tension shear(CTS) specimen subjected to shear loading. In the high-loading condition, fatigue crack under shear loading propagated branching from the pre-crack tip. Meanwhile, the secondary fatigue crack in the low-loading condition which was created in the notch root due to friction on the pre-crack face grew to a main crack. Influenced by the mode II loading condition, fatigue crack propagation retardation appeared in the initial propagation region due to the reduction of crack driving force and friction on crack face. In both cases, however, fatigue cracks grew in tensile mode type. Propagation path of fatigue crack under the shear loading was 70 degree angle from the initial crack regardless of its shape and load magnitude.

  • PDF

Fatigue Crack Propagation Behavior in STS304 Under Mixed-Mode Loading

  • Lee, Jeong-Moo;Song, Sam-Hong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.796-804
    • /
    • 2003
  • The use of fracture mechanics has traditionally concentrated on crack growth under an opening mechanism. However, many service failures occur from cracks subjected to mixed-mode loading. Hence, it is necessary to evaluate the fatigue behavior under mixed-mode loading. Under mixed-mode loading, not only the fatigue crack propagation rate is of importance, but also the crack propagation direction. In modified range 0.3$\leq$a/W$\leq$0.5, the stress intensity factors (SIFs) of mode I and mode II for the compact tension shear (CTS) specimen were calculated by using elastic finite element analysis. The propagation behavior of the fatigue cracks of cold rolled stainless steels (STS304) under mixed-mode conditions was evaluated by using K$\_$I/ and $_{4}$ (SIFs of mode I and mode II). The maximum tangential stress (MTS) criterion and stress intensity factor were applied to predict the crack propagation direction and the propagation behavior of fatigue cracks.