• Title/Summary/Keyword: Model Partitioning

Search Result 274, Processing Time 0.026 seconds

INTEGRAL METHODS OF FUZZY AHP AND DSM FOR EVALUATION IN PARTITIONING DESIGN TEAMS

  • Lou Y. Liang
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1036-1046
    • /
    • 2009
  • Many construction activities are related because they share the information of working methods and resources. Generally, the design information for coupled activities needs to be constantly collaborated in the different teams. To achieve the improvement in team collaboration, it is necessary to identify the relative coupled activities in the design teams. The activity and work partitioning arrangements are also required to accommodate the appropriate team members. This paper presents an integral method to be an evaluation in improving the collaboration for teams partitioning. A model, Team Partitioning Method (TPM) was developed to clarify the relationships between activities in a team. The results show the applicability of TPM model in team partitioning for design collaboration.

  • PDF

Development of Parsimonious Semi-Distributed Hydrologic Partitioning Model Based on Soil Moisture Storages (토양수분 저류 기반의 간결한 준분포형 수문분할모형 개발)

  • Choi, Jeonghyeon;Kim, Ryoungeun;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.3
    • /
    • pp.229-244
    • /
    • 2020
  • Hydrologic models, as a useful tool for understanding the hydrologic phenomena in the watershed, have become more complex with the increase of computer performance. The hydrologic model, with complex configurations and powerful performance, facilitates a broader understanding of the effects of climate and soil in hydrologic partitioning. However, the more complex the model is, the more effort and time is required to drive the model, and the more parameters it uses, the less accessible to the user and less applicable to the ungauged watershed. Rather, a parsimonious hydrologic model may be effective in hydrologic modeling of the ungauged watershed. Thus, a semi-distributed hydrologic partitioning model was developed with minimal composition and number of parameters to improve applicability. In this study, the validity and performance of the proposed model were confirmed by applying it to the Namgang Dam, Andong Dam, Hapcheon Dam, and Milyang Dam watersheds among the Nakdong River watersheds. From the results of the application, it was confirmed that despite the simple model structure, the hydrologic partitioning process of the watershed can be modeled relatively well through three vertical layers comprising the surface layer, the soil layer, and the aquifer. Additionally, discussions were conducted on antecedent soil moisture conditions widely applied to stormwater estimation using the soil moisture data simulated by the proposed model.

An Integer Programming-based Local Search for the Set Partitioning Problem

  • Hwang, Junha
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.9
    • /
    • pp.21-29
    • /
    • 2015
  • The set partitioning problem is a well-known NP-hard combinatorial optimization problem, and it is formulated as an integer programming model. This paper proposes an Integer Programming-based Local Search for solving the set partitioning problem. The key point is to solve the set partitioning problem as the set covering problem. First, an initial solution is generated by a simple heuristic for the set covering problem, and then the solution is set as the current solution. Next, the following process is repeated. The original set covering problem is reduced based on the current solution, and the reduced problem is solved by Integer Programming which includes a specific element in the objective function to derive the solution for the set partitioning problem. Experimental results on a set of OR-Library instances show that the proposed algorithm outperforms pure integer programming as well as the existing heuristic algorithms both in solution quality and time.

A Cyclic Sliced Partitioning Method for Packing High-dimensional Data (고차원 데이타 패킹을 위한 주기적 편중 분할 방법)

  • 김태완;이기준
    • Journal of KIISE:Databases
    • /
    • v.31 no.2
    • /
    • pp.122-131
    • /
    • 2004
  • Traditional works on indexing have been suggested for low dimensional data under dynamic environments. But recent database applications require efficient processing of huge sire of high dimensional data under static environments. Thus many indexing strategies suggested especially in partitioning ones do not adapt to these new environments. In our study, we point out these facts and propose a new partitioning strategy, which complies with new applications' requirements and is derived from analysis. As a preliminary step to propose our method, we apply a packing technique on the one hand and exploit observations on the Minkowski-sum cost model on the other, under uniform data distribution. Observations predict that unbalanced partitioning strategy may be more query-efficient than balanced partitioning strategy for high dimensional data. Thus we propose our method, called CSP (Cyclic Spliced Partitioning method). Analysis on this method explicitly suggests metrics on how to partition high dimensional data. By the cost model, simulations, and experiments, we show excellent performance of our method over balanced strategy. By experimental studies on other indices and packing methods, we also show the superiority of our method.

Phosphoprotein Partitioning in Metal-Affinity Aqueous Two-Phase Systems and Prediction of Partitioning Behavior (금속 친화성 액 이상분계 시스템에서 Phsphoprotein분배 및 분배예측)

  • 정봉현
    • KSBB Journal
    • /
    • v.9 no.3
    • /
    • pp.279-286
    • /
    • 1994
  • A mathematical model has been derived and used to describe phosphoprotein partitioning in Fe(III) IDA-PEG/dextran two-phase systems. This model includes the inhibitory effects of hydrogen and hydroxyl ion concentrations on protein partitioning. For aqueous two-phase partitioning experiments, the Al and A2 subcomponents of ovalbumin carrying two and one surface phosphoryl group(s) were purified using an immobilized metal ion affinity chromatography (IMAC). The ratio of partition coefficients in the presence and absence of Fe(III)IDA-PEG, K/Ko, increased in the pH range of 3.0 to 5.0 due to deprotonation of the second oxygen of the phosphoryl group, and above pH 5.0 declined steeply by the inhibitory binding of hydroxyl ions to the metal ion. This partitioning behavior was well described by the mathematical model. The binding constants for formation of the complex between the phosphoryl group and the Fe(III)IDA-PEG were found to be $6.1{\times}10^3M^{-1} and 2.3{\times}10^4M^{-1}$ in the top and bottom phases, respectively. These values are 3-5 times those for interaction of Cu(II)IDA-PEG with a single surface-accessible histidine.

  • PDF

Sequential Mesh Coding using Wave Partitioning

  • Kim, Tae-Wan;Ahn, Jeong-Hwan;Jung, Hyeok-Koo;Ho, Yo-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1507-1510
    • /
    • 2002
  • In this paper, we propose a sequential mesh cod- ing algorithm using the vertex pedigree based on the wave partitioning. After a mesh model is partitioned into several small processing blocks (SPB) using wave partitioning, we obtain vertices for each SPB along circumferences defined by outer edges of the attached triangles. Once all the vertices within each circumference are arranged into one line, we can encode mesh models

  • PDF

Performance Improvement of Declustering Algorithm by Efficient Grid-Partitioning Multi-Dimensional Space (다차원 공간의 효율적인 그리드 분할을 통한 디클러스터링 알고리즘 성능향상 기법)

  • Kim, Hak-Cheol
    • Journal of Korea Spatial Information System Society
    • /
    • v.12 no.1
    • /
    • pp.37-48
    • /
    • 2010
  • In this paper, we analyze the shortcomings of the previous declustering methods, which are based on grid-like partitioning and a mapping function from a cell to a disk number, for high-dimensional space and propose a solution. The problems arise from the fact that the number of splitting is small(for the most part, binary-partitioning is sufficient), and the side length of a range query whose selectivity is small is quite large. To solve this problem, we propose a mathematical model to estimate the performance of a grid-like partitioning method. With the proposed estimation model, we can choose a good grid-like partitioning method among the possible schemes and this results in overall improvement in declustering performance. Several experimental results show that we can improve the performance of a previous declustering method up to 2.7 times.

Numerical Study of Low-pressure Subcooled Flow Boiling in Vertical Channels Using the Heat Partitioning Model (열분배모델을 이용한 수직유로에서의 저압 미포화비등 해석)

  • Lee, Ba-Ro;Lee, Yeon-Gun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.7
    • /
    • pp.457-470
    • /
    • 2016
  • Most CFD codes, that mainly adopt the heat partitioning model as the wall boiling model, have shown low accuracies in predicting the two-phase flow parameters of subcooled boiling phenomena under low pressure conditions. In this study, a number of subcooled boiling experiments in vertical channels were analyzed using a thermal-hydraulic component code, CUPID. The prediction of the void fraction distribution using the CUPID code agreed well with experimental data at high-pressure conditions; whereas at low-pressure conditions, the predicted void fraction deviated considerably from measured ones. Sensitivity tests were performed on the submodels for major parameters in the heat partitioning model to find the optimized sets of empirical correlations suitable for low-pressure subcooled flow boiling. The effect of the K-factor on the void fraction distribution was also evaluated.

Reliability Evaluation of a Distribution System with wind Turbine Generators Based on the Switch-section Partitioning Method

  • Wu, Hongbin;Guo, Jinjin;Ding, Ming
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.575-584
    • /
    • 2016
  • Considering the randomness and uncertainty of wind power, a reliability model of WTGs is established based on the combination of the Weibull distribution and the Markov chain. To analyze the failure mode quickly, we use the switch-section partitioning method. After defining the first-level load zone node, we can obtain the supply power sets of the first-level load zone nodes with each WTG. Based on the supply sets, we propose the dynamic division strategy of island operation. By adopting the fault analysis method with the attributes defined in the switch-section, we evaluate the reliability of the distribution network with WTGs using a sequential Monte Carlo simulation method. Finally, using the IEEE RBTS Bus6 test system, we demonstrate the efficacy of the proposed model and method by comparing different schemes to access the WTGs.

Branch-and-bound method for solving vertical partitioning problems in the design of the relational database (관계형 데이터 베이스 설계에서 분지한계법을 이용한 수직분할문제)

  • 윤병익;김재련
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.37
    • /
    • pp.241-249
    • /
    • 1996
  • In this paper, a 0-1 integer programming model for solving vertical partitioning problem minimizing the number of disk accesses is formulated and a branch-and-bound method is used to solve the binary vertical partitioning problem. In relational databases, the number of disk accesses depends on the amount of data transferred from disk to main memory for processing the transactions. Vertical partitioning of the relation can often result in a decrease in the number of disk accesses, since not all attributes in a tuple are required by each transactions. The algorithm is illustrated with numerical examples and is shown to be computationally efficient. Numerical experiments reveal that the proposed method is more effective in reducing access costs than the existing algorithms.

  • PDF