• Title/Summary/Keyword: Model Reference Adaptive Control

Search Result 380, Processing Time 0.035 seconds

A model reference adaptive fuzzy control for MIMO Takagi-Sugeno fuzzy model (MIMO Takagi-Sugeno 퍼지 모델을 위한 모델참조 적응 퍼지 제어기의 설계)

  • Cho, Young-Wan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.1
    • /
    • pp.130-135
    • /
    • 2007
  • In this paper, a direct model reference adaptive fuzzy control (MRAFC) scheme is developed for the plant model whose structure is represented by the MIMO Takagi-Sugeno fuzzy model. The MRAFC scheme is proposed to provide asymptotic tracking of a reference signal lot the systems with uncertain or slowly time-varying parameters. The developed control law and adaptive law guarantee that all signals in the closed-loop system are bounded. In addition, the plant state tracks the state of the reference model asymptotically with time tot any bounded reference input signal.

An Indirect Model Reference Adaptive Fuzzy Control for SISO Takagi-Sugeno Model

  • Cho, Young-Wan;Park, Chang-Woo;Lee, Ki-Chul;Park, Mignon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.32-42
    • /
    • 2001
  • In this paper, a parameter estimator is developed for the plant model whose structure is represented by the Takagi-Sugeno model. The essential idea behind the on-line estimation is the comparison of the measured stated with the state of an estimation model whose structure is the same as that of the parameterized model. Based on the parameter estimation scheme, and indirect Model Reference Adaptive Fuzzy control(MRAFC) scheme is proposed to provide asymptotic tracking of a reference signal for the systems with uncertain for slowly time-varying parameters. The developed control law and adaptive law guarantee the boundedness of all signals in the closed-loop systems. In addition, the plant state tracks the state of the reference model asymptotically with time for any bounded reference input signal.

  • PDF

Active Vibration Control of a Opened Box Structure By a Model Reference Neuro-Controller (모델기반 신경망 제어기를 이용한 열린 박스 구조물의 진동제어)

  • Jang, Seung-Ik;Shen, Yun-De;Kee, Chang-Doo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1602-1607
    • /
    • 2003
  • Vibration causes noise and sometimes makes structure unstable. Especially, due to the efforts of lightening, deformation of flexible structure is increased in its shape. Just a little disturbance can cause vibration and low damping ratio makes residual vibration last long time. This research is concerned with the model reference neuro-controller design for the vibration suppression of smart structures. By using a model reference neurocontroller, which is one of the algorithms of adaptive control, we performed an adaptive control of flexible cantilever plate and opened box structure with piezoelectric materials. The proposed adaptive vibration control algorithm, a model reference neuro-controller, was proved in its effectiveness by applying to an opened box structure. The model reference neuro-controller is implemented with DSP, and the real-time adaptive vibration control experiment results confirm that the model reference neuro-controller is reliable.

  • PDF

A Study on Application of Adaptive Control Theory to D.C. Motor Speed Control (직류전동기의 속도제어에 대한 적응제어이론의 적용에 관한 연구)

  • Kim, Seong-Guk;Kim, Do-Hyeon;Choe, Gye-Geun
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.18 no.3
    • /
    • pp.35-41
    • /
    • 1981
  • In this paper, the application of model reference adaptive control theory to the D.C motor speed control using the microprocessor is studied. It is shown that with the use of an adaptive control algorithm the error between output of the motor and the reference model, which is approximated to first order, can be conve to zero. By computer simulation and the practical implementation with the microprocessor M 6800, can be concluded that the adaptive control system adapts well to the rapid change of the load and reference inputs.

  • PDF

A Direct Adaptive Fuzzy Control of Nonlinear Systems with Application to Robot Manipulator Tracking Control

  • Cho, Young-Wan;Seo, Ki-Sung;Lee, Hee-Jin
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.6
    • /
    • pp.630-642
    • /
    • 2007
  • In this paper, we propose a direct model reference adaptive fuzzy control (MRAFC) for MIMO nonlinear systems whose structure is represented by the Takagi-Sugeno fuzzy model. The adaptive law of the MRAFC estimates the approximation error of the fuzzy logic system so that it provides asymptotic tracking of the reference signal for the systems with uncertain or slowly time-varying parameters. The developed control law and adaptive law guarantee the boundedness of all signals in the closed-loop system. In addition, the plant state tracks the state of the reference model asymptotically with time for any bounded reference input signal. To verify the validity and effectiveness of the MRAFC scheme, the suggested analysis and design techniques are applied to the tracking control of robot manipulator and simulation studies are carried out. In the control design, the MRAFC is combined with feedforward PD control to make the actual joint trajectories of the robot manipulator with system uncertainties track the desired reference joint position trajectories asymptotically stably.

Adaptive Control of a Single Rod Hydraulic Cylinder - Load System under Unknown Nonlinear Friction

  • Lee Myeong-Ho;Park Hyung-Bae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.251-259
    • /
    • 2005
  • A discrete time model reference adaptive control has been applied in order to compensate the nonlinear friction characteristics in a hydraulic proportional position control system. As nonlinear friction, static and coulomb friction forces are considered and modeled as dead zone and external disturbance respectively. The model reference adaptive control system consists of a cascade combination of the dead zone. external disturbance and linear dynamic block. For adaptive control experiment. the DSP(Digital Signal Processor) board has been interfaced the hydraulic proportional position control system. The experimental results show that the MRAC(Model Reference Adaptive Control) for compensation of static and coulomb friction are very effective.

A Model reference adaptive speed control of marine diesel engine by fusion of PID controller and fuzzy controller

  • Yoo, Heui-Han
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.7
    • /
    • pp.791-799
    • /
    • 2006
  • The aim of this paper is to design an adaptive speed control system of a marine diesel engine by fusion of hard computing based proportional integral derivative (PID) control and soft computing based fuzzy control methods. The model of a marine diesel engine is considered as a typical non oscillatory second order system. When its model and the actual marine diesel engine ate not matched, it is hard to control the speed of the marine diesel engine. Therefore, this paper proposes two methods in order to obtain the speed control characteristics of a marine diesel engine. One is an efficient method to determine the PID control parameters of the nominal model of a marine diesel engine. Second is a reference adaptive speed control method that uses a fuzzy controller and derivative operator for tracking the nominal model of the marine diesel engine. It was found that the proposed PID parameters adjustment method is better than the Ziegler & Nichols' method, and that a model reference adaptive control is superior to using only PID controller. The improved control method proposed here, could be applied to other systems when a model of a system does not match the actual system.

MRAC Fuzzy Control for High Performance of Induction Motor Drive (유도전동기 드라이브의 고성능 제어를 위한 MRAC 퍼지제어)

  • 정동화;이정철
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.215-223
    • /
    • 2002
  • This paper investigates the adaptive control of a fuzzy logic based speed and flux controller fur a vector controlled induction motor drive. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the model reference adaptive control(MRAC) fuzzy controller is evaluated by simulation for various operating conditions. The validity of the Proposed MRAC fuzzy controller is confirmed by performance results for induction motor drive system.

Design of Reconfigurable Flight Controller Using Discrete Model Reference Adaptive Scheme

  • Hyung, Seung-Yong;Kim, You-Dan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.79-86
    • /
    • 2007
  • In this paper, an adaptive control algorithm using system identification is proposed for an aircraft fault tolerant control system. A discrete state-space system is reformulated to be the ARX model which has the advantage in handing variable structure systems. Discrete model reference adaptive control is used to make the output of fault system follow the output of reference model. To validate the performance of the proposed control scheme, numerical simulations are performed for the high performance aircraft with control surface damage.

Variable Structure Model Reference Adaptive Control, for SIMO Systems

  • mohammadi, Ardeshir Karami
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1987-1992
    • /
    • 2004
  • A Variable Structure Model Reference Adaptive Controller (VS-MRAC) using state Variables is proposed for single input multi output systems. . The structure of the switching functions is designed based on stability requirements, and global exponential stability is proved. Transient behavior is analyzed using sliding mode control and shows perfect model following at a finite time. The effect of input disturbances on stability and transients is investigated and shows preference to the conventional MRAC schemes with integral adaptation law. Sliding surfaces are independent of system parameters and therefore VS-MRAC is insensitive to system parameter variations. Simulation is presented to clear the theoretical results.

  • PDF