• Title/Summary/Keyword: Modeling Aggregates

Search Result 40, Processing Time 0.02 seconds

A Study on the Bibliographic Description of RDA & KCR4 Cataloging Rules for FRBRizing the Aggregates (집합물의 FRBR 구현 방안에 관한 연구 - RDA, KCR4 목록규칙 기술방안을 중심으로 -)

  • Lee, Mi-hwa
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.29 no.1
    • /
    • pp.27-46
    • /
    • 2018
  • This study is to suggest the bibliographic description of RDA & KCR4 cataloging rules for FRBRizing the aggregates based on aggregates modeling. It is to suggest bibliographic description of RDA & KCR4 cataloging rules of aggregates through analyzing FRBR and LRM aggregates modeling and comparing RDA and KCR4 cataloging rules about aggregates. First, it is to describe the bibliographic records based on object oriented model, and to describe both aggregates works and separate works appropriately. Second, in case of aggregates by one person, family, or corporate body, collective title as aggregates work and separate works in aggregates must be regulated in RDA. In KCR4, collective titles rules should be regulated for aggregate works and separate works should be described. Third, aggregates of works by different persons, families, or corporate bodies should be accessible by aggregates work and separate works, and aggregates of works by different persons, families, or corporate bodies without collective title should be accessible by each of the works in both RDA and KCR4. Fourth, augmentation aggregates could be accessible by main work's expression, the expression of aggregates work, and separate expressions of the augmentation. This study will contribute to FRBRize the aggregates by suggesting bibliographic description of RDA & KCR4 cataloging rules.

A proposal for an approach for meso scale modeling for concrete based on rigid body spring model

  • Zhao, Chao;Shi, Zheng;Zhong, Xingu
    • Computers and Concrete
    • /
    • v.27 no.3
    • /
    • pp.283-295
    • /
    • 2021
  • Existing meso-scale models of concrete need to refine the mesh grids of aggregate and cement mortar, which may greatly reduce the computational efficiency. To overcome this problem, a novel meso-scale modeling strategy, which is based on rigid body spring method and Voronoi diagram, is proposed in this study to establish the meso-scale model of concrete. Firstly, establish numerical aggregate models according to user-defined programs. Circle aggregates are adopted due to their high efficiency in generation and packing process, and the grading of aggregate are determined according to the distribution curve proposed by Full and Thompson; Secondly, extract the centroids of aggregates, and then develop the Voronoi diagram in which aggregate centroids are defined as initial scatters; Finally, establish the rigid body spring model for concrete based on the Voronoi diagram. Aggregates are represented by rigid blocks, and assumed to be unbreakable. Cement mortar is concentrated into the interface between adjacent blocks and represented by two uniform springs. The number of grids is consistent with that of aggregates in specimens, and no mesh-refinement of aggregates and cement mortar is required. The accuracy and efficiency of the proposed modeling strategy are firstly identified by comparing the numerical results with the experimental ones, and then the applicability of the proposed strategy with different volume percentage occupied by aggregates is investigated.

A Study on the Development of Forced Carbonation Reforming Technology for Recycled Aggregates (순환골재의 강제 탄산화 개질 기술 개발을 위한 기초적 연구)

  • Lim, Myung-Kwan;Park, Won-Jun;Lee, Huck;Kim, Do-Yun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.207-208
    • /
    • 2016
  • The most important things for the production of recycled aggregates are saving energy, suppressing the generation of by-product fine particles and sustaining the performance of concrete. As solutions, this study proposes this technology of improving the performance of recycled aggregates through forced carbonation.1) It is to stimulate and carbonate the bond paste part that causes the deterioration of recycled aggregates. Particularly, the purpose of this technology is to fill and chemically stabilize pores inside the bond paste, further improving the quality of recycled aggregates with a decreased absorption rate and an enhanced aggregate strength. Ultimately, it is possible to obtain a carbonation model, depending on the paste ratio and particle-size distribution of recycled aggregates. Moreover, by calculating the optimum carbonation period through the verification of this carbonation model, it is possible to examine how much the strength is improved by the reformation of recycled aggregated.

  • PDF

Chloride diffusivity of concrete: probabilistic characteristics at meso-scale

  • Pan, Zichao;Ruan, Xin;Chen, Airong
    • Computers and Concrete
    • /
    • v.13 no.2
    • /
    • pp.187-207
    • /
    • 2014
  • This paper mainly discusses the influence of the aggregate properties including grading, shape, content and distribution on the chloride diffusion coefficient, as well as the initiation time of steel corrosion from a probabilistic point of view. Towards this goal, a simulation method of random aggregate structure (RAS) based on elliptical particles and a procedure of finite element analysis (FEA) at meso-scale are firstly developed to perform the analysis. Next, the chloride diffusion coefficient ratio between concrete and cement paste $D_{app}/D_{cp}$ is chosen as the index to represent the effect of aggregates on the chloride diffusion process. Identification of the random distribution of this index demonstrates that it can be viewed as actually having a normal distribution. After that, the effect of aggregates on $D_{app}/D_{cp}$ is comprehensively studied, showing that the appropriate properties of aggregates should be decided by both of the average and the deviation of $D_{app}/D_{cp}$. Finally, a case study is conducted to demonstrate the application of this mesoscopic method in predicting the initiation time of steel corrosion in reinforced concrete (RC) structures. The mesoscopic probabilistic method developed in this paper can not only provide more reliable evidences on the proper grading and shape of aggregates, but also play an important role in the probability-based design method.

Shear Behavior of Reinforced Concrete Beams according to Replacement Ratio of Recycled Coarse Aggregate (순환 굵은골재 치환율에 따른 철근콘크리트 보의 전단거동)

  • Kim, Sang-Woo;Jeong, Chan-Yu;Jung, Chang-Kyo;Kim, Kil-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.157-164
    • /
    • 2012
  • This study evaluates the shear performance of reinforced concrete beams with recycled coarse aggregates. A total of six specimens with various replacement ratios of recycled coarse aggregates (0%, 50%, and 100%) and different amount of shear reinforcement were cast and tested in this study. A finite element analysis was performed to predict the shear behavior of the specimens with natural or recycled coarse aggregates. The FE analysis was performed using a two-dimensional nonlinear FE analysis program based on the disturbed stress field model (DSFM), which is an extension of the modified compression field theory (MCFT). Experimental results showed that the specimens with 50% and 100% replacement ratios of recycled coarse aggregates had the similar shear strength compared to the specimen with natural aggregates, regardless of the replacement ratios of recycled coarse aggregates and the amount of the shear reinforcement. Furthermore, the comparison between experimental and analytical results showed that the proposed numerical modeling methods and the analytical model, DSFM, can be successfully used to predict the shear behavior of reinforced concrete beams with recycled coarse aggregates.

Modeling the alkali aggregate reaction expansion in concrete

  • Zahira, Sekrane Nawal;Aissa, Asroun
    • Computers and Concrete
    • /
    • v.16 no.1
    • /
    • pp.37-48
    • /
    • 2015
  • Alkali aggregate reaction affects numerous civil engineering structures and causes irreversible expansion and cracking. This work aims at developing model to predict the potential expansion of concrete containing alkali-reactive aggregates. First, the paper presents the experimental results concerning the influence of particle size of an alkali-reactive aggregate on mortar expansion studied at 0.15-0.80 mm, 1.25-2.50 mm and 2.5-5.0 mm size fractions and gives data necessary for model development. Results show that no expansion was measured on the mortars using small particles (0.15-0.80 mm) while the particles (1.25-2.50 mm) gave the largest expansions. Finally, model is proposed to simulate the experimental results by studying correlations between the measured expansions and the size of aggregates and to calculate the thickness of the porous zone necessary to take again all the volume of the gel created by this chemical reaction.

Mapping of the lost riprap in shallow marine sediments using SBP (SBP를 이용한 해저 천부에 유실된 사석의 조사)

  • Shin, Sung-Ryul;Kim, Chan-Su;Yeo, Eun-Min;Kim, Young-Jun;Ha, Hee-Sang
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.220-221
    • /
    • 2005
  • Sub-bottom profiler(SBP) has been used extensively for the mapping of basement in the foundation design of offshore structure, for pre- and post-dredging operations within harbors and channels, for selection of pipeline routes, sitting of drilling platforms, and in the exploration for an aggregates such as sands and gravels. During the construction of Siwha embankment for irrigation water and the expansion of arable land, the breaking of an embankment unfortunately occurred so that a lot of riprap was swept away and widely dispersed by the tide and strong current. The feasibility study for the construction of the tidal-powered electric plant in Siwha embankment was performed quite recently. Therefore we made use of SBP survey to investigate the distribution of the lost riprap. We could successfully map out the distribution of the lost riprap from the reflection amplitude characteristics of the sediments in SBP data set. We demonstrated the variation of reflection amplitude versus the sediments with and/or without riprap by means of the numerical modeling of acoustic wave equation using finite difference method. Also we examined an amplitude anomaly of the ripraped area through the physical modeling using ultrasonic.

  • PDF

Numerical modeling of heterogeneous material

  • Puatatsananon, W.;Saouma, V.;Slowik, V.
    • Computers and Concrete
    • /
    • v.5 no.3
    • /
    • pp.175-194
    • /
    • 2008
  • Increasingly numerical (finite element) modeling of concrete hinges on our ability to develop a representative volume element with all its heterogeneity properly discretized. Yet, despite all the sophistication of the ensuing numerical models, the initial discretization has been for the most part simplistic. Whenever the heterogeneity of the concrete is to be accounted for, a mesh is often manually crafted through the arbitrary inclusion of the particles (aggregates and/or voids) in an ad-hoc manner. This paper develops a mathematical strategy to precisely address this limitation. Algorithms for the random generation and placement of elliptical (2D) or ellipsoid (3D) inclusions, with possibly radiating cracks, in a virtual concrete model are presented. Collision detection algorithms are extensively used.

Amyloid pore-channel hypothesis: effect of ethanol on aggregation state using frog oocytes for an Alzheimer's disease study

  • Parodi, Jorge;Ormeno, David;Paz, Lenin D. Ochoa-de la
    • BMB Reports
    • /
    • v.48 no.1
    • /
    • pp.13-18
    • /
    • 2015
  • Alzheimer's disease severely compromises cognitive function. One of the mechanisms to explain the pathology of Alzheimer's disease has been the hypotheses of amyloid-pore/channel formation by complex $A{\beta}$-aggregates. Clinical studies suggested the moderate alcohol consumption can reduces probability developing neurodegenerative pathologies. A recent report explored the ability of ethanol to disrupt the generation of complex $A{\beta}$ in vitro and reduce the toxicity in two cell lines. Molecular dynamics simulations were applied to understand how ethanol blocks the aggregation of amyloid. On the other hand, the in silico modeling showed ethanol effect over the dynamics assembling for complex $A{\beta}$-aggregates mediated by break the hydrosaline bridges between Asp 23 and Lys 28, was are key element for amyloid dimerization. The amyloid pore/ channel hypothesis has been explored only in neuronal models, however recently experiments suggested the frog oocytes such an excellent model to explore the mechanism of the amyloid pore/channel hypothesis. So, the used of frog oocytes to explored the mechanism of amyloid aggregates is new, mainly for amyloid/pore hypothesis. Therefore, this experimental model is a powerful tool to explore the mechanism implicates in the Alzheimer's disease pathology and also suggests a model to prevent the Alzheimer's disease pathology.

Absorbtion Spectroscopy, Molecular Dynamics Calculations, and Multivariate Curve Resolution on the Phthalocyanine Aggregation

  • Ajloo, Davood;Ghadamgahi, Maryam;Shaheri, Freshte;Zarei, Kobra
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1440-1448
    • /
    • 2014
  • Co(II)-tetrasulfonated phthalocyanine (CoTSP) is known to be aggregated to dimer at high concentration levels in water. A study on the aggregation of CoTSP using multivariate curve resolution analysis of the visible absorbance spectra over a concentration range of 30, 40 and 50 ${\mu}M$ in the presence of dimethyl sulfoxide (DMSO), dimethyl formamide (DMF), acetonitrile (AN) and ethanol (EtOH) in the concentration range of 0 to 3.57 M is conducted. A hard modeling-based multivariate curve resolution method was applied to determine the dissociation constants of the CoTSP aggregates at various temperatures ranging from 25, 45 and $65^{\circ}C$ and in the presence of various co-solvents. Dissociation constant for aggregation was increased and then decrease by temperature and concentration of phthalocyanine, respectively. Utilizing the vant Hoff relation, the enthalpy and entropy of the dissociation equilibriums were calculated. For the dissociation of both aggregates, the enthalpy and entropy changes were positive and negative, respectively. Molecular dynamics simulation of cosolvent effect on CoTSP aggregation was done to confirm spectroscopy results. Results of radial distribution function (RDF), root mean square deviation (RMSD) and distance curves confirmed more effect of polar solvent to decrease monomer formation.