• Title/Summary/Keyword: Modified I%26G Model

Search Result 1, Processing Time 0.016 seconds

Prediction on the Performance of Polymer-Based Mechanical Low-Pass Filters for High-G Accelerometers (고충격 가속도센서용 고분자 기반 기계식 저역통과필터의 성능 예측)

  • Sehwan Song;Junyong Jang;Youlim Lee;Hanseong Jo;Sang-Hee Yoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.262-272
    • /
    • 2023
  • A polymer-based mechanical low-pass filter(m-LPF) for high-g accelerometers makes it possible to remove high-frequency transient noises from acceleration signals, thus ensuring repeatable and reliable measurement on high-g acceleration. We establish a prediction model for performance of m-LPF by combining a fundamental vibration model with the fractional derivative standard linear solid(FD SLS) model describing the storage modulus and loss modulus of polymers. Here, the FD SLS model is modified to consider the effect of m-LPF shape factor (i.e., thickness) on storage modulus and loss modulus. The prediction accuracy is verified by comparing the displacement transmissibility(or cut-off frequency) estimated using our model with that measured from 3 kinds of polymers(polysulfide rubber(PSR), silicone rubber(SR), and polydimethylsiloxane(PDMS)). Our findings will contribute a significant growth of m-LPF for high-g accelerometers.