• Title/Summary/Keyword: Modified Morison equation

Search Result 12, Processing Time 0.024 seconds

Experimental and numerical study on the wave force calculation of a partially immersed horizontal cylindrical float

  • Liu, Bijin;Fu, Danjuan;Zhang, Youquan;Chen, Xiaoyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.733-742
    • /
    • 2020
  • Taking the cylindrical float of the floating fence of a floating litter collection device as the research object, based on the shallow immersion characteristics of the cylindrical float, the Morison equation is modified, and the interaction between regular waves and the partially immersed horizontal cylindrical float is discussed in combination with scale model test. The results show that the modified Morison equation can accurately predict the wave force of the horizontal cylindrical float and reveal the influence of amplitude, immersion depth and period on the wave force of the cylindrical float. For partially immersed cylindrical floats, the wave force increases with the increase in wave height and decays with the increase in period. The positive value distribution of the wave force is larger than that of the negative direction, and the difference between the positive and negative directions is mainly affected by the immersion depth.

Dynamic responses of a riser under combined excitation of internal waves and background currents

  • Lou, Min;Yu, Chenglong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.3
    • /
    • pp.685-699
    • /
    • 2014
  • In this study, the dynamic responses of a riser under the combined excitation of internal waves and background currents are studied. A modified Taylor-Goldstein equation is used to calculate the internal waves vertical structures when background currents exist. By imposing rigid-lid boundary condition, the equation is solved by Thompson-Haskell method. Based on the principle of virtual work, a nonlinear differential equation for riser motions is established combined with the modified Morison formula. Using Newmark-${\beta}$ method, the motion equation is solved in time domain. It is observed that the internal waves without currents exhibit dominated effect on dynamic response of a riser in the first two modes. With the effects of the background currents, the motion displacements of the riser will increase significantly in both cases that wave goes along and against the currents. This phenomenon is most obviously observed at the motions in the first mode.

Numerical Analysis of Hydrodynamic Characteristics for Various Types of Jack-up Legs (다양한 형상의 Jack-up Leg에 대한 해양 동역학적 수치해석)

  • Kim, Ji-Seok;Park, Min-Su;Koo, Weoncheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.371-377
    • /
    • 2014
  • In this study, the hydrodynamic characteristics of various types of jack-up legs for a wind turbine installation vessel were analyzed. Using the modified Morison equation, the wave and current excitation forces on the jack-up legs were calculated. A modal analysis was performed to predict the dynamic responses for various types of jack-up legs. The Newmark-beta time integration scheme was used to solve the equation of motion in waves in the time domain. The maximum displacement and maximum bending stress were computed for four different types of legs, and their results were compared to select an optimum leg type. Finally, a six-leg jack-up rig with the selected optimal legs was modeled, and its natural period and hydrodynamic behaviors were evaluated.

Effects of Free Surface Fluctuation on the Response of Submerged Structure (파낭에 의한 해수면의 변화가 해양구조물의 동적거동에 미치는 영향)

  • Cho, Yong-Jun;Yoo, Keung-Hwan
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.1
    • /
    • pp.1-10
    • /
    • 1993
  • In this paper, the effects of free surface fluctuation on the dynamic response of offshore structure is studied. In order to make the mathematical treatment of problem more tractable, only a single degree of freedom system subjected a long crested, stationary, Gaussian, non-breaking random waves of arbitrary bandwidth is considered. Wave force is computed based on the Morison equation in which wave induced fluid particle velocity and acceleration are modified to account for the effect of intermittent submergence of structural members near the free surface. It is shown that the response spectrum is reduced and higher harmonic response component appears when the intermittent submergence of structural member is considered. Furthermore, it is also found that the amount of reduction in the response spectrum is getting smaller as frequency is increased which might be attributed to the higher harmonic component caused by intermittent submergence and these effects are getting profound as water depth is decreased.

  • PDF

Wave induced motion of a triangular tension leg platforms in deep waters

  • Abou-Rayan, A.M.;El-Gamal, Amr R.
    • Ocean Systems Engineering
    • /
    • v.3 no.2
    • /
    • pp.149-165
    • /
    • 2013
  • Tension leg platforms (TLP's) are highly nonlinear due to large structural displacements and fluid motion-structure interaction. Therefore, the nonlinear dynamic response of TLP's under hydrodynamic wave loading is necessary to determine their deformations and dynamic characteristics. In this paper, a numerical study using modified Morison Equation was carried out in the time domain to investigate the influence of nonlinearities due to hydrodynamic forces and the coupling effect between all degrees of freedom on the dynamic behavior of a TLP. The stiffness of the TLP was derived from a combination of hydrostatic restoring forces and restoring forces due to cables and the nonlinear equations of motion were solved utilizing Newmark's beta integration scheme. The effect of wave characteristics was considered.

Seismic and vibration mitigation for the A-type offshore template platform system

  • Lee, Hsien Hua
    • Structural Engineering and Mechanics
    • /
    • v.6 no.3
    • /
    • pp.347-362
    • /
    • 1998
  • In this study an improved design method for the traditional A-type(or V-type) offshore template platform system was proposed to mitigate the vibration induced by the marine environmental loadings and the strong ground motions of earthquakes. A newly developed material model was combined into the structural system and then a nonlinear dynamic analysis in the time domain was carried out. The analysis was focused on the displacement and rotation induced by the input wave forces and ground motions, and the mitigation effect for these responses was evaluated when the viscoelastic damping devices were applied. The wave forces exerted on the offshore structures are based on Stokes fifth-order wave theory and Morison equation for small body. A step by step integration method was modified and used in the nonlinear analysis. It was found that the new design approach enhanced with viscoelastic dampers was efficient on the vibration mitigation for the structural system subjected to both the wave motion and the strong ground motion.

Dynamic Analysis of Marine Drilling Riser (해저자원개발을 위한 Riser의 동력학적 연구)

  • Han, Nam Soo;Yun, Chung Bang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.2
    • /
    • pp.65-75
    • /
    • 1984
  • A comparative study between several methods for the marine drilling riser analysis is carried out. One static analysis method and four dynamic methods are studied. The dynamic analysis methods used are two time domain methods using regular and random waves, and two frequency domain methods using the conventional and an improved linearization techniques. Two different sizes of risers are investigated. The analysis model of the structure is based on the beam-column element with lateral wave/current loads in a vertical plane. The forces on the riser are calculated using a modified farm of the Morison's equation. The finite element method is used to solve the equation for several wave/current conditions.

  • PDF

Dynamic Analysis of Elastic Catenary Cable Subjected to Current (조류 하중을 받는 탄성 현수선 케이블의 동적 해석)

  • 백인열;장승필;윤종윤
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.95-104
    • /
    • 1998
  • The dynamic behavior of the marine cable is essentially nonlinear and dominated by geometric nonlinearity. Furthermore, fluid drag force makes the problem more complex and difficult. Therefore, it has certain limitations to obtain the dynamic behavior of the marine cable by analytical method. The purpose of this paper is to apply the elastic catenary cable element to the problem of under water cable including the hydrodynamic effects of fluids. The static and dynamic formulations for the three-dimensional elastic catenary coble under water effects are derived and the finite element analysis procedures are presented. In the analysis, the hydrodynamic forces are modeled by modified Morison equation. A comparison of the results obtained using present method with previously published results showed the validity of present method. The dynamic behavior of the marine cable subjected to current is investigated using present method and it can be illustrated that the dynamic behavior of the marine cable subjected to current varies with the incident angle of the current and inclined angle of the cable.

  • PDF

Influence of Tether Length in the Response Behavior of Square Tension Leg Platform in Regular Waves

  • El-gamal, Amr R.;Essa, Ashraf
    • International Journal of Ocean System Engineering
    • /
    • v.4 no.1
    • /
    • pp.19-28
    • /
    • 2014
  • The tension leg platform (TLP) is a vertically moored structure with excess buoyancy. The TLP is regarded as moored structure in horizontal plan, while inherit stiffness of fixed platform in vertical plane. In this paper, a numerical study using modified Morison equation was carried out in the time domain to investigate the influence of nonlinearities due to hydrodynamic forces and the coupling effect between surge, sway, heave, roll, pitch and yaw degrees of freedom on the dynamic behavior of TLP's. The stiffness of the TLP was derived from a combination of hydrostatic restoring forces and restoring forces due to cables and the nonlinear equations of motion were solved utilizing Newmark's beta integration scheme. The effect of tethers length and wave characteristics such as wave period and wave height on the response of TLP's was evaluated. Only uni-directional waves in the surge direction was considered in the analysis. It was found that for short wave periods (i.e. 10 sec.), the surge response consisted of small amplitude oscillations about a displaced position that is significantly dependent on tether length, wave height; whereas for longer wave periods, the surge response showed high amplitude oscillations about that is significantly dependent on tether length.

Numerical and experimental study on the scale effect of internal solitary wave loads on spar platforms

  • Wang, Xu;Zhou, Ji-Fu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.569-577
    • /
    • 2020
  • Based on laboratory experiments and numerical simulations, the scale effect of Internal Solitary Wave (ISW) loads on spar platforms is investigated. First, the waveforms, loads, and torques on the spar model at a laboratory obtained by the experiments and simulations agree well with each other. Then, a prototype spar platform is simulated numerically to elucidate the scale effect. The scale effect for the horizontal forces is significant owing to the viscosity effect, whereas it is insignificant and can be neglected for the vertical forces. From the similarity point of view, the Froude number was the same for the scaled model and its prototype, while the Reynolds number increased significantly. The results show that the Morison equation with the same set of drag and inertia coefficients is not applicable to estimate the ISW loads for both the prototype and laboratory scale model. The coefficients should be modified to account for the scale effect. In conclusion, the dimensionless vertical forces on experimental models can be applied to the prototype, but the dimensionless horizontal forces of the experimental model are larger than those of the prototype, which will lead to overestimation of the horizontal force of the prototype if direct conversion is implemented.