• Title/Summary/Keyword: Mold manufacturing

Search Result 960, Processing Time 0.029 seconds

Development of Mold Manufacturing Technology for Small (소형항공기용(반디호) 몰드 제작 기술개발)

  • Jung, D.H.;Shin, S.K.;Seong, K.J.;Song, B.H.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.13 no.1
    • /
    • pp.43-49
    • /
    • 2005
  • There are several ways to mold the complex material, and it is divided to vacuum pack mold, compression mold, and hand lay up for a high molecular substance as a basic material. Moreover, it can be divided to general manufacturing (Single form) and mold manufacturing(Mold form) under normal temperature for Firefly. Firefly was manufactured with hand lay up and general manufacturing that using the foam core, glass fabric, and template without mold. However, mold manufacturing that is producing the surface by semi-sandwich using thin foam core and glass fabric then reinforce the inside with spar and rib is on developing. Mold manufacturing can make easy to production, standardize the quality, and possible to mass producing. In this paper, we present the mold producing process for canard aircraft "Firefly", and the problems and solutions during producing Firefly. Moreover, it complements the defect that the problems caused by master manufacturing error when produce several masters of a large part, and make the manufacturing process to be shortened by the replacement from the supplementary plate to the foam that is installed when producing lay up mold.

  • PDF

Mold technology with 3D printing for manufacturing of porous implant (다공성 임플란트 제조를 위한 3D 프린팅 응용 금형기술)

  • Lee, Sung-Hee;Kim, Mi-Ae;Yun, Eon-Gyeong;Lee, Won-Sik
    • Design & Manufacturing
    • /
    • v.11 no.1
    • /
    • pp.30-33
    • /
    • 2017
  • In this study, the mold technology for manufacturing of porous implant was investigated. Firstly, we considered the concept of insert molding technology with 3D printing of porous inert part. The part on implant was designed in the end region of the implant. And then main implant bodies were manufactured using conventional machining method. The other porous parts were designed and optimized with molding simulation. As the feature size of porous implant was so small that perfect feature of it using 3D printing technology could not be obtained. So, we proposed another scheme for manufacturing of the porous implant in the replace of the former approach. Polymer mold cores with 3D printing technology were considered. The effects of addictive manufacturing process parameters on the properties of mechanical and dimensional accuracy were investigated. Direct 3D printed polymer mold cores were designed and manufactured under the simulation of thermal and molding analysis. It was shown that 3D printed mold core with polymer could be adapted to the injection molding for porous implant.

The Surface Roughness of Injection Product according to the change of Injection Conditions (성형조건에 따른 성형품의 표면 거칠기 변화)

  • Park, Joon-Hyoung;Kim, Kuy-Bok;Yoon, Se-Kwon;Lee, Hyeon-Woo;Kim, Sun-Kyung
    • Design & Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.12-17
    • /
    • 2014
  • Currently, injection molding process is a very useful technique that be applied to many field. And injection molding technology has been commercial based on many studies. However, there is no standard of surface roughness because there are few studies about surface technology of injection product. In addition, when designing the mold, changes of the core surface and the injection conditions are not considered. In this paper, change of surface according to the core and the injection conditions was compared with the surface of the injection product. Accumulation of these technologies will propose direction in mold design, manufacturing and injection molding technology.

  • PDF

Using Features as the Knowledge Carrier for Cross Company Collaboration and Change Management - A design methodology for compressing lead-time from plastic part design to mold making

  • Zengzhi, Li;Qinrong, Fu;Feng, Lu Wen;Bin, Song
    • International Journal of CAD/CAM
    • /
    • v.3 no.1_2
    • /
    • pp.43-50
    • /
    • 2003
  • This paper presents a methodology in which the knowledge of design intents and change requests is communicated unambiguously cross collaboration partners through features. The domain of application is focused on the plastic part design for enabling effective collaboration between the product design and plastic mold making. The methodology takes the feature-based design approach and allows design features and knowledge to be reused in plastic injection mold design. It shortens the mold design lead-time, reduces mold design efforts, and enables unambiguous and fast design change management between product and mold designers. These contribute to the reduction of product development cycle time.

A study on the establishment of an MES system that converges design, processing, and measurement during cutting (절삭가공 시 설계, 가공, 측정을 융합한 MES 시스템 구축에 관한 연구)

  • Park, Hae-Woong;Lee, Seung-Wook;Han, Heui-Bong;Yun, Jae-Woong;Choi, Kye-Kwang;Han, Seong-Ryeol;Kim, Kyung-A;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.15 no.2
    • /
    • pp.42-48
    • /
    • 2021
  • In this paper, when manufacturing large/multi-mold parts (more than 30 core parts),A mold manufacturing (tolerance) management system was established through design-processing linkage.The mold manufacturing (tolerance) management system is a design-based measurement shape/measurement position determination system, M/C processing-linked measurement drive system,It is composed of four parts: CAD-linked measurement result analysis system and manager mold part quality management system.In addition, the constructed system was applied to the field and the effect of system construction was evaluated by comparing it with the existing process.As a result of the evaluation, the measurement precision is within 0.02mm, and the time it takes to measure after the end of processing is shorter than that of the existing process.(12 hours → 2 hours) It was shortened to 16.7%.In addition, it was confirmed that the time required for reprocessing after measurement was reduced by 25% (4 hours → 1 hour) compared to the existing process.

Web-based Monitoring System for Mold Manufacturing Process by Indirect Measurement of Cutting Force (절삭력 간접 측정을 통한 웹기반 금형가공공정 감시 시스템)

  • Kim G. H.;Shin B. C.;Choi J. H.;Shin G. H.;Yoon G. S.;Cho M. W.
    • Transactions of Materials Processing
    • /
    • v.15 no.1 s.82
    • /
    • pp.82-88
    • /
    • 2006
  • In this paper, the web-based monitoring system is developed for the effective process monitoring of mold manufacturing using web. In developed system, the cutting force for monitoring the manufacturing condition is measured using hall-sensor that is low cost and useful to be installed in a machine tool indirectly. Specially, the current of main spindle in a machine tool is converted into cutting force by various experiments. For effective web-based monitoring, the program which runs in the local computer of client is made to exchange message between a server and a client by making of ActiveX control and the result of manufacturing is shown on web-browser by Ch language. The developed system in this study is the foundation of establishing E-manufacturing in mold factory.

Numerical Study of Aircraft Winglet Mold Manufacturing using Flexible Forming (가변성형기술을 활용한 항공기 윙렛용 몰드 제작에 관한 수치적 연구)

  • Park, J.W.;Ku, T.W.;Kim, J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.23 no.8
    • /
    • pp.482-488
    • /
    • 2014
  • Flexible forming technology has advantages in sheet metal forming, because it can be implemented to produce various shaped molds using a single apparatus. Due to this advantage, it is possible to apply it to the manufacture of an aircraft winglet mold. Presently, most aircraft winglets are manufactured from composite materials. Therefore, the mold for the curing process is an essential element in the fabrication of such composite materials. Compared to conventional mold forming, flexible forming has some advantages such as reduced manufacturing cost and uniformity of mold thickness. If the thickness of the mold is consistent, then the heat transfer will occur uniformly during the curing process leading to improved formability of the composite material. In the current study, numerical simulations were performed to investigate the possibility of flexible forming for manufacturing of the winglet mold. In order to match the size of the actual product, the shape of objective surface was divided to fit the dimensions of the apparatus. The results from the numerical simulations are compared with the objective surface to verify the accuracy. In conclusion, the current study confirms the feasibility and the potential to manufacture winglet molds by flexible forming.

A study on gas vent control of injection mold for the production of precision medical device parts (정밀 의료기기 부품 생산을 위한 사출금형의 가스벤트 제어에 관한 연구)

  • Lee, Jeong-Won;Son, Min-Kyu
    • Design & Manufacturing
    • /
    • v.14 no.2
    • /
    • pp.34-41
    • /
    • 2020
  • Typical characteristics of medical device parts are that they can not be reused and there are many disposable products. Therefore, there is a need for an injection molding machine having excellent repeatability of molding conditions and a precision injection mold for mass production. Recently, the performance of an injection machine has made a remarkable evolution compared to the past. However, defects such as short-shot, flash, weld line, gas burning, warpage, and deformation, which are typical defects, still do not disappear at all. This is due to the lack of gas ventilation from the product cavities, even if the gas is smoothly vented from the sprue and runner of the mold. For this reason, the internal pressure of the cavity rises and is directly connected to the quality defects. In this study, an active gas vent system was designed to prevent defects due to trapped gas in the cavity. Since it can be easily adjustable in response to the molding conditions and the mold temperature changes, it is expected to improve productivity due to the reduction of the defective ratio.

Improvement of Weldlines of an Injection Product in Using Movement of a High Temperature Gas (고온기체 유동을 이용한 사출성형품의 웰드라인 개선)

  • Jung, Jae-Sung;Lee, Young-Joo;Min, Kyung-Bae;Song, Bo-Keun;Kim, Hee-Sung;Kim, Sun-Kyung
    • Design & Manufacturing
    • /
    • v.8 no.1
    • /
    • pp.19-22
    • /
    • 2014
  • Today, looking at the trend of product development, interests of injection technology to reduce weldline are growing because of increases of polymer composite materials that containing functional elements and demand of no-painted injection in accordance with environmental regulations. In this paper, surface temperatures of mold increased using high temperature gas for elimination of weldline and characteristics of weldline are analyzed according to mold temperature($60^{\circ}C{\sim}120^{\circ}C$).

  • PDF

Thermal Analysis of Continuous Casting Mold (연속주조 몰드의 열해석)

  • 조동현
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.6
    • /
    • pp.43-49
    • /
    • 1999
  • This study is object to thermal analysis of continuous casting mold. A two-dimensional transient finite element model was developed to compute the temperature distribution and stress behavior for continuous casting mold. For thermal analysis using analysis result from FEM code. In order to thermal analysis of continuous casting mold, many variables such as casting speed, cooling condition, film coefficient, convection and load condition are considered.

  • PDF