• Title/Summary/Keyword: Molecular Diagnostic Techniques

Search Result 61, Processing Time 0.023 seconds

Integrated diagnostic approach of pediatric neuromuscular disorders

  • Lee, Ha Neul;Lee, Young-Mock
    • Journal of Genetic Medicine
    • /
    • v.15 no.2
    • /
    • pp.55-63
    • /
    • 2018
  • Clinical and genetic heterogeneity in association with overlapping spectrum is characteristic in pediatric neuromuscular disorders, which makes confirmative diagnosis difficult and time consuming. Considering evolution of molecular genetic diagnosis and resultant upcoming genetically modifiable therapeutic options, rapid and cost-effective genetic testing should be applied in conjunction with existing diagnostic methods of clinical examinations, laboratory tests, electrophysiologic studies and pathologic studies. Earlier correct diagnosis would enable better clinical management for these patients in addition to new genetic drug options and genetic counseling.

Magnetic Resonance Imaging Meets Fiber Optics: a Brief Investigation of Multimodal Studies on Fiber Optics-Based Diagnostic / Therapeutic Techniques and Magnetic Resonance Imaging

  • Choi, Jong-ryul;Oh, Sung Suk
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.4
    • /
    • pp.218-228
    • /
    • 2021
  • Due to their high degree of freedom to transfer and acquire light, fiber optics can be used in the presence of strong magnetic fields. Hence, optical sensing and imaging based on fiber optics can be integrated with magnetic resonance imaging (MRI) diagnostic systems to acquire valuable information on biological tissues and organs based on a magnetic field. In this article, we explored the combination of MRI and optical sensing/imaging techniques by classifying them into the following topics: 1) functional near-infrared spectroscopy with functional MRI for brain studies and brain disease diagnoses, 2) integration of fiber-optic molecular imaging and optogenetic stimulation with MRI, and 3) optical therapeutic applications with an MRI guidance system. Through these investigations, we believe that a combination of MRI and optical sensing/imaging techniques can be employed as both research methods for multidisciplinary studies and clinical diagnostic/therapeutic devices.

Antibody radiolabeling with diagnostic Cu-64 and therapeutic Lu-177 radiometal

  • Abhinav Bhise;Jeongsoo Yoo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.8 no.1
    • /
    • pp.45-49
    • /
    • 2022
  • With the development of monoclonal antibodies, therapeutic or diagnostic radioisotope has been successfully delivered at tumor sites with high selectivity for antigens. Different approaches have been applied to improve the tumor-to-normal ratio by considering the in vivo stability of radioimmunoconjugates as a prerequisite. Various stable and inert antibody radiolabeling techniques for radioimmunoconjugate preparation have been extensively evaluated to enhance in vivo stability. Antibody radiolabeling techniques should be rapid and easy; they should not disrupt the immunoreactivity and in vivo behavior of antibodies, which are coupled with a bifunctional chelator (BFC) to stably coordinate with a radiometal. For the design of BFCs, radiometal coordination properties must be considered. However, various diagnostic radionuclides, such as 89Zr, 64Cu, 68Ga, 111ln, and 99mTc, or therapeutic radionuclides, such as 177Lu, 67Cu, 90Y, and 225Ac, have been increasingly used for antibody radiolabeling. In addition to useful radionuclides, 64Cu and 177Lu with the most accessible or the highest production rates in many countries should be considered. In this review, we mainly discussed antibody radiolabeling techniques and conditions that involve 64Cu and 177Lu radiometals.

Real-Time Pleural Elastography: Potential Usefulness in Nonintubated Video-Assisted Thoracic Surgery

  • Tacconi, Federico;Chegai, Fabrizio;Perretta, Tommaso;Ambrogi, Vincenzo
    • Journal of Chest Surgery
    • /
    • v.54 no.5
    • /
    • pp.433-435
    • /
    • 2021
  • Pleural adhesions are a major challenge in standard and nonintubated video-assisted thoracic surgery. The currently available imaging techniques help to assess the presence and extent of pleural adhesions, but do not provide information on tissue deformability, which is crucial for intraoperative management. In this report, we describe the utilization of real-time elastography mapping of pleural adhesions. This technique enabled us to detect areas with softer adhesions, and helped establish the surgical plan in a difficult case of a patient scheduled for nonintubated video-assisted thoracic surgery.

Diagnostic Techniques for SARS-CoV-2 Detection (SARS-CoV-2의 진단기술)

  • Kim, Jong-Sik;Kang, Na-Kyung;Park, Seon-Mi;Lee, Eun-Joo;Chung, Kyung Tae
    • Journal of Life Science
    • /
    • v.30 no.8
    • /
    • pp.731-741
    • /
    • 2020
  • Coronavirus disease 19 (COVID-19) is caused by SARS-CoV-2 (Severe Acute Respiratory SyndromeCoronavirus 2). To date, seven coronaviruses that can infect humans were reported. Among them, infections with four coronavirus strains (HCoV-229E, HCoV-OC43, HCoV-NL63, and HCoV-HKU1) resulted in mild symptoms such as common cold, whereas SARS-CoV and MERS-CoV caused severe symptoms and epidemics in 2002 and 2012, respectively. In the most recent, SARS-CoV-2 was first reported in Wuhan, China in December 2019 and became a notorious cause of the ongoing global pandemics. To diagnose, treat, and prevent COVID-19, the development of rapid and accurate diagnostic tools, specific therapeutic drugs, and safe vaccines essentially are required. In order to develop these powerful tools, it is prerequisite to understand a phenotype, a genotype, and life cycle of SARS-CoV-2. Diagnostic techniques have been developing rapidly around world and many countries take the fast track system to accelerate approval. Approved diagnostic devices are rapidly growing facing to urgent demand to identify carriers. Currently developed commercial diagnostic devices are divided into mainly two categories: molecular assay and serological & immunological assay. Molecular assays begins the reverse transcription step following polymerase chain reaction or isothermal amplification. Immunological assay targets SARS-CoV-2 antigen or anti-SARS-CoV-2 antibody of samples. In this review, we summarize the phenotype, genome structure and gene expression of SARS-CoV-2 and provide the knowledge on various diagnostic techniques for SARS-CoV-2.

Molecular Nuclear imaging of Angiogenesis (혈관신생 분자핵의학 영상)

  • Lee, Kyung-Han
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.2
    • /
    • pp.171-174
    • /
    • 2004
  • Angiogenesis, the formation of new capillaries from existing vessels, increases oxygenation and nutrient supply to ischemic tissue and allows tumor growth and metastasis. As such, angiogenesis targeting provides a novel approach for cancer treatment with easier drug delivery and less drug resistance. Therapeutic anti-angiogenesis has shown impressive effects in animal tumor models and are now entering clinical trials. However, the successful clinical introduction of this new therapeutic approach requires diagnostic tools that can reliably measure angiogenesis in a noninvasive and repetitive manner. Molecular imaging is emerging as an exciting new discipline that deals with imaging of disease on a cellular or genetic level. Angiogenesis imaging is an important area for molecular imaging research, and the use of radiotracers offers a particularly promising technique for its development. While current perfusion and metabolism radiotracers can provide useful information related to tissue vascularity, recent endeavors are focused on the development of novel radioprobes that specifically and directly target angiogenic vessels. Presently available proges include RGD sequence containing peptides that target ${\alpha}_v\;{\beta}_3$ integrin, endothelial growth factors such as VEGF or FGF, metalloptoteinase inhibitors, and specific antiangiogenic drugs. It is now clear that nuclear medicine techniques have a remarkable potential for angiogenesis imaging, and efforts are currently continuing to develop new radioprobes with superior imaging properties. With future identification of novel targets, design of better probes, and improvements in instrumentation, radiotracer angiogenesis imaging promises to play an increasingly important role in the diagnostic evaluation and treatment of cancer and other angiogenesis related diseases.

Comparison of Laboratory Tests Applied for Diagnosing the SARS-CoV-2 Infection (SARS-CoV-2 감염의 진단에 이용되는 검사실 테스트의 비교)

  • Lee, Chang-Gun;Lee, Dongsup
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.54 no.2
    • /
    • pp.79-94
    • /
    • 2022
  • Due to the highly contagious nature and severity of the respiratory diseases caused by COVID-19, economical and accurate tests are required to better monitor and prevent the spread of this contagion. As the structural and molecular properties of SARS-CoV-2 were being revealed during the early stage of the COVID-19 pandemic, many manufacturers of COVID-19 diagnostic kits actively invested in the design, development, validation, verification, and implementation of diagnostic tests. Currently, diagnostic tests for SARS-CoV-2 are the most widely used and validated techniques for rapid antigen, and immuno-serological assays for specific IgG and IgM antibody tests and molecular diagnostic tests. Molecular diagnostic assays are the gold standard for direct detection of viral RNA in individuals suspected to be infected with SARS-CoV-2. Antibody-based serological tests are indirect tests applied to determine COVID-19 prevalence in the community and identify individuals who have obtained immunity. In the future, it is necessary to explore technical problems encountered in the early stages of global or regional outbreaks of pandemics and provide future directions for better diagnostic tests. This article evaluates the commercially available and FDA-approved molecular and immunological diagnostic assays and analyzes their performance characteristics.

Aptamers as Functional Nucleic Acids: in vitro Selection and Biotechnological Applications

  • You, Kyung-Man;Lee, Sang-Hyun;Aesul Im;Lee, Sun-Bok
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.2
    • /
    • pp.64-75
    • /
    • 2003
  • Aptamers are functional nucleic acids that can specially bind to proteins, peptides, amino acids. nucleotides, drugs, vitamins and other organic and inorganic compounds. The aptamers are identified from random DNA or RNA libraries by a SELEX (systematic evolution of ligands by exponential amplification) process. As aptamers have the advantage, and potential ability to be released from the limitations of antibodies, they are attractive to a wide range of therapeutic and diagnostic applications. Aptamers, with a high-affinity and specificity, could fulfil molecular the recognition needs of various fields in biotechnology. In this work, we reviewed some aptamer Selection techniques, properties, medical applications of their molecules and their biotechnological applications, such as ELONA (enzyme linked oligonucleotide assay), flow cytometry, biosensors, electrophoresis, chromatography and microarrays.

Molecular Pathology of Lung Cancer: Current Status and Future Directions

  • Roh, Mee Sook
    • Tuberculosis and Respiratory Diseases
    • /
    • v.77 no.2
    • /
    • pp.49-54
    • /
    • 2014
  • The rapid development of targeted therapies has enormously changed the clinical management of lung cancer patients over the past decade; therefore, molecular testing, such as epidermal growth factor receptor (EGFR) gene mutations or anaplastic lymphoma kinase (ALK) gene rearrangements, is now routinely used to predict the therapeutic responses in lung cancer patients. Moreover, as technology and knowledge supporting molecular testing is rapidly evolving, the landscape of targetable genomic alterations in lung cancer is expanding as well. This article will summarize the current state of the most commonly altered and most clinically relevant genes in lung cancer along with a brief review of potential future developments in molecular testing of lung cancer.

Poultry Coccidiosis-A Concurrent Overview on Etiology, Diagnostic Practices, and Preventive Measures

  • Nawarathne, Shan Randima;Yu, Myunghwan;Heo, Jung Min
    • Korean Journal of Poultry Science
    • /
    • v.48 no.4
    • /
    • pp.297-318
    • /
    • 2021
  • Coccidiosis is a major parasitic disease in the poultry industry, with great economic implications worldwide. It is a ubiquitous protozoan infection caused by several species of the genus Eimeria (host-specific) that colonize and reproduce in the intestine of birds, ultimately altering the health and performance of the flock. At present, several methods are used to diagnose coccidiosis in poultry, including field and laboratory techniques (intestinal lesion scoring, oocyst counting in feces, and biochemical and molecular diagnosis). Traditionally, diagnosed flocks have been treated either by vaccination to improve the active immunity of the birds against coccidiosis or supplementation of prophylactic anticoccidials to ameliorate the deleterious effects of coccidiosis. However, these methods has certain drawbacks such as vaccine-induced coccidiosis, drug resistance, and residual drug accumulation in the host. Consequently, alternative safe anti-coccidial agents, including the use of phytogenic compounds, have been explored for preventing coccidiosis. Here, we provide a simple overview of the literature on poultry coccidiosis by focusing on the etiology, diagnostic practices, and preventive measures.