• Title/Summary/Keyword: Molecular diagnostic methods

Search Result 193, Processing Time 0.028 seconds

Diagnosis of Helicobacter pylori Infection (헬리코박터 파일로리 감염 진단의 최신 지견)

  • Huh, Cheal Wung;Kim, Byung-Wook
    • The Korean Journal of Gastroenterology
    • /
    • v.72 no.5
    • /
    • pp.229-236
    • /
    • 2018
  • Accurate diagnosis of Helicobacter pylori (H. pylori) infection is mandatory for the effective management of many gastroduodenal diseases. Currently, various diagnostic methods are available for detecting these infections, and the choice of method should take into account the clinical condition, accessibility, advantage, disadvantage, as well as cost-effectiveness. The diagnostic methods are divided into invasive (endoscopic-based) and non-invasive methods. Non-invasive methods included urea breath test, stool antigen test, serology, and molecular methods. Invasive methods included endoscopic imaging, rapid urease test, histology, culture, and molecular methods. In this article, we provide a review of the currently available options and recent advances of various diagnostic methods.

Integrated diagnostic approach of pediatric neuromuscular disorders

  • Lee, Ha Neul;Lee, Young-Mock
    • Journal of Genetic Medicine
    • /
    • v.15 no.2
    • /
    • pp.55-63
    • /
    • 2018
  • Clinical and genetic heterogeneity in association with overlapping spectrum is characteristic in pediatric neuromuscular disorders, which makes confirmative diagnosis difficult and time consuming. Considering evolution of molecular genetic diagnosis and resultant upcoming genetically modifiable therapeutic options, rapid and cost-effective genetic testing should be applied in conjunction with existing diagnostic methods of clinical examinations, laboratory tests, electrophysiologic studies and pathologic studies. Earlier correct diagnosis would enable better clinical management for these patients in addition to new genetic drug options and genetic counseling.

Advanced Diagnostic Aids in Oral Cancer

  • Masthan, K.M.K.;Babu, N. Aravindha;Dash, Kailash Chandra;Elumalai, M.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.3573-3576
    • /
    • 2012
  • Oral cancers are one of the most common cancers worldwide today. They are usually neglected by the common population when compared to systemic cancers such as the lung cancer, colon cancer etc. However, they also may be extremely fatal if left untreated even at a very initial stage of the lesion. Early detection and treatment gives the best chance for its cure. The five-year survival rate of oral cancer still remains low and delayed diagnosis is suggested to be one of the major reasons. The detection and diagnosis are currently based on clinical examination, histopathological evaluation of the biopsy material and molecular methods. Several diagnostic aids have been developed over the years for early detection of oral cancer. The purpose of this article is to review the advanced available diagnostic adjuncts for the detection of oral cancer.

Validation of Synovial Fluid Clinical Samples for Molecular Detection of Pathogens Causing Prosthetic Joint Infection Using GAPDH Housekeeping Gene as Internal Control

  • Jiyoung Lee;Eunyoung Baek;Hyesun Ahn;Youngnam Park;Geehyuk Kim;Sua Lim;Suchan Lee;Sunghyun Kim
    • Biomedical Science Letters
    • /
    • v.29 no.4
    • /
    • pp.220-230
    • /
    • 2023
  • Identification of the pathogens causing infection is important in terms of patient's health management and infection control. Synovial fluids could be used as clinical samples to detect causative pathogens of prosthetic joint infections (PJIs) using molecular diagnostic assays, therefore, normalization and validation of clinical samples are necessary. Microbial culture is considered the gold standard for all infections, including PJIs. Recently, molecular diagnostic methods have been developed to overcome the limitation of microbial culture. Therefore, guideline for validating clinical samples to provide reliable results of molecular diagnostic assays for infectious diseases is required in clinical field. The present study aimed to develop an accurate validating method of synovial fluid clinical samples using GAPDH gene as an internal control to perform the quantitative PCR TaqMan probe assay to detect pathogens causing PJIs.

Current Diagnostic Methods for Periprosthetic Joint Infection

  • Lee, Jiyoung;Park, Heechul;Bae, Jinyoung;Hyun, Hyanglan;Kim, Sunghyun
    • Biomedical Science Letters
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • Total joint arthroplasty is a successful joint replacement treatment that improves joint function and overall quality of life and provides pain relief. However, the prevalence of periprosthetic joint infection (PJI) has become prevalent with the rise in the incidence of arthroplasty surgery. PJI occurs rarely following arthroplasty however presents with serious complications, including high morbidity. The identification of causative microorganisms is essential for the treatment of PJI. Managing PJI requires complex treatment strategies, including long-term antibacterial treatment, and significant medical costs can be incurred. The American Academy of Orthopedic Surgeons, the Centers for Disease Control and Prevention, and Surgical Care Improvement Project guidelines recommend that prophylactic antibiotics such as first-generation cephalosporins be infused completely 1 hour before surgical incision. However, these preventative antibiotics are very limited, therefore risk factors must be identified to diagnosis and treat patients effectively. Moreover, determining antimicrobial susceptibility during artificial joint surgery and choosing the most appropriate treatment strategy following an accurate diagnosis of microbial infections are essential. In the present review, we describe the management, including the etiology, diagnosis, and classification of PJI, and approaches to its diagnosis using the available novel molecular diagnostic methods.

Comparison of Pre-Operation Diagnosis of Thyroid Cancer with Fine Needle Aspiration and Core-needle Biopsy: a Meta-analysis

  • Li, Lei;Chen, Bao-Ding;Zhu, Hai-Feng;Wu, Shu;Wei, Da;Zhang, Jian-Quan;Yu, Li
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7187-7193
    • /
    • 2014
  • Background: The aim of this meta-analysis was to compare sensitivities and specificities of fine needle aspiration (FNA) and core needle biopsy (CNB) in the diagnosis of thyroid cancer. Materials and Methods: Articles were screened in Medline, the Cochrane Library, EMBASE and Google Scholar, and subsequently included and excluded based on the patient/problem-intervention-comparison-outcome (PICO) principle. Primary outcome was defined in terms of diagnostic values (sensitivity and specificity) of FNA and CNB for thyroid cancer. Secondary outcome was defined as the accuracy of diagnosis. Compiled FNA and CNB results from the final studies selected as appropriate for meta-analysis were compared with cases for which final pathology diagnoses were available. Statistical analyses were performed for FNA and CNB for all of the selected studies together, and for individual studies using the leave-one-out approach. Results: Article selection and screening yielded five studies for meta-analysis, two of which were prospective and the other three retrospective, for a total of 1,264 patients. Pooled diagnostic sensitivities of FNA and CNB methods were 0.68 and 0.83, respectively, with specificities of 0.93 and 0.94. The areas under the summary ROC curves were 0.905 (${\pm}0.030$) for FNA and 0.745 (${\pm}0.095$) for CNB, with no significant difference between the two. No one study had greater influence than any other on the pooled estimates for diagnostic sensitivity and specificity. Conclusions: FNA and CNB do not differ significantly in sensitivity and specificity for diagnosis of thyroid cancer.

Comparison of the Three Molecular Diagnostic Assays for Molecular Identification of Mycobacterium tuberculosis and Nontuberculous Mycobacteria Species in Sputum Samples

  • Bae, Jinyoung;Park, Sung-Bae;Kim, Ji-Hoi;Kang, Mi Ran;Lee, Kyung Eun;Kim, Sunghyun;Jin, Hyunwoo
    • Biomedical Science Letters
    • /
    • v.26 no.3
    • /
    • pp.170-178
    • /
    • 2020
  • Mycobacterium tuberculosis (MTB) continues to be one of the main causative agents of tuberculosis (TB); moreover, the incidence of nontuberculous mycobacteria (NTM) infections has been rising gradually in both immunocompromised and immunocompetent patients. Precise and rapid detection and identification of MTB and NTM in respiratory specimens are thus important for MTB infection control. Molecular diagnostic methods based on the nucleic acid amplification test (NAAT) are known to be rapid, sensitive, and specific compared to the conventional acid-fast bacilli (AFB) smear and mycobacterial culture methods. In the present study, the clinical performances of three commercial molecular diagnostic assays, namely TB/NTM PCR (Biocore), MolecuTech Real MTB-ID® (YD Diagnostics), and REBA Myco-ID® (YD Diagnostics), were evaluated with a total of 92 respiratory specimens (22 AFB smear positives and 67 AFB smear negatives). The sensitivity and specificity of TB/NTM PCR were 100% and 75.81%, respectively. The corresponding values of MolecuTech Real MTB-ID® and REBA Myco-ID® were 56.52% and 90.32%, and 56.52% and 82.26%, respectively. TB/NTM PCR showed the highest sensitivity; however, the concordant rate was 10% compared with sequence analysis. Although MolecuTech Real MTB-ID® showed lower sensitivity, its specificity was the highest among the three methods. REBA Myco-ID® allowed accurate classification of NTM species; therefore, it was the most specific diagnostic method. Of the three PCR-based methods, MolecuTech Real MTB-ID® showed the best performance. This method is expected to enable rapid and accurate identification of MTB and NTM.

Terahertz (THz) imaging technology for therapeutic and diagnostic applications of cancer incorporating with radiopharmaceutical fields

  • Min, Sun-Hong;Cho, Ilsung;Park, Chawon;Jung, Wongyun;Hwang, Won Taek;Kim, Minho;Lee, Kyo Chul;Lee, Yong Jin;Lim, Sang Moo;Hong, Bong Hwan
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.5 no.2
    • /
    • pp.120-128
    • /
    • 2019
  • Radiopharmaceuticals include therapeutic radiopharmaceuticals and diagnostic radiopharmaceuticals. Therapeutic radiopharmaceuticals are administered to the body and ingested at specific organs to detect radiation emitted from the site and to construct an image to diagnose the disease. Diagnostic radiopharmaceuticals are used to treat diseases by killing cells with radiation emitted from radiopharmaceuticals, such as cancer cells, vascular endothelial cells, arthritis, and Alzheimer's disease. The application possibilities of terahertz imaging technology for the combination of radiopharmaceuticals and molecular imaging medicine are discussed and experimental methods are presented. Terahertz imaging is expected to be a powerful technique because of the effective piercing feasibility, which enables to perform safe and high resolutive imaging. To investigate the response of cell to the terahertz wave, both the pulsed and CW THz wave systems are employed. THz imaging of a rat's paraffin-embedded epithelial cell with tumor is studied in advance.

Comparison of Histopathology, Serology and PCR for the Diagnosis of Malignant Catarrhal Fever (Malignant Catarrhal Fever의 병리조직학적 진단과 혈청학적 진단 및 PCR 진단법의 비교)

  • Kim, Ok-jin;Crawford, Timothy B.
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.3
    • /
    • pp.471-476
    • /
    • 2003
  • Malignant catarrhal fever (MCF) is a systemic disease of ruminants caused by ovine herpesvirus 2 (OvHV-2). OvHV-2 is a gamma herpesvirus, which induces frequent latent infection and often difficult to detect its antigens and even specific nucleic acids because of its low viral copies in the infected tissues. Histopathology, serology and polymerase chain reaction (PCR) were compared for the diagnosis of MCF using 10 bison infected with OvHV-2. Histopathological diagnosis was performed using the criteria which was based upon the pathognomic lesions. Serological diagnosis was conducted using its serum with competitive ELISA for the detection of antibodies of OvHV-2. Also, the nest PCR was performed with peripheral blood leukocytes for the detection of OvHV-2-specific DNAs. Primers 556 and 775 were used for the primary amplification, and primers 556 and 555 were used for the secondary amplification. As the results, positive cases were 6 by histopahology, 9 by serology and 10 by PCR. As comparing with other diagnostic methods, PCR was found to be more sensitive than histopathology and serology. The recent development of molecular diagnostic assays has provided powerful tools for investigating how viruses survive in nature. Development of PCR specific for viruses has dramatically improved the accuracy of diagnosis of viruses in clinically infected animals. Furthermore, amplification of viral genomic material by nest PCR represents the most sensitive method for the detection of viruses and might be detected successfully even though very low viral DNA copies. So, it could be used as the first choice for the detection of viral DNAs with low copies such as the status of latent infection. However, it has also some limitation of application like as false negative results by PCR inhibitors and false positive results by contamination. The results of this study suggest that the use of molecular biological methods like PCR may increase the accuracy for the diagnosis of infectious diseases. However, in diagnostic laboratory, it is recommended that PCR assay must be conducted with other diagnostic methods for more reliable diagnosis.

Molecular subtyping and antimicrobial susceptibility of Streptococcus dysgalactiae subspecies equisimilis isolates from clinically diseased pigs

  • Oh, Sang-Ik;Kim, Jong Wan;Kim, Jongho;So, Byungjae;Kim, Bumseok;Kim, Ha-Young
    • Journal of Veterinary Science
    • /
    • v.21 no.4
    • /
    • pp.57.1-57.11
    • /
    • 2020
  • Background: Streptococcus dysgalactiae subspecies equisimilis (SDSE) acts as an etiological agent for lameness, neurological signs, and high mortality in pigs. Despite its importance in pig industries and zoonotic potential, little is known about the effects of this pathogen. Objectives: This study aimed to determine the molecular characteristics and antimicrobial resistance of SDSE strains isolated from diseased pigs. Methods: A total 11 SDSE isolates were obtained from diseased pigs. Bacterial identification, PCR for virulence genes, emm typing, and antimicrobial resistance genes, multilocus sequence typing, and antimicrobial susceptibility test were performed. Results: Nine isolates were from piglets, and 8 showed lameness, sudden death, or neurological signs. The isolates were PCR-positive for sla (100%), sagA (100%), and scpA (45.5%), and only 1 isolate amplified the emm gene (stL2764). Eight different sequence types were detected, categorized into 2 clonal complexes and 4 singletons. All the isolates in this study were included in a small cluster, which also contained other strains derived from humans and horses. The minimum inhibitory concentrations for the tested beta-lactams were low, while those for macrolides, tetracyclines, and fluoroquinolones were relatively high. PCR analysis of the macrolide and tetracycline resistance genes demonstrated that the isolates carried erm(B) (18.2%, n = 2), mef(A/E) (9.1%, n = 1), tet(M) (18.2%, n = 2), and tet(O) (90.2%, n = 10). Two isolates presented a mutation in parC, which is associated with fluoroquinolone resistance. Conclusion: This study provided insight into swine-derived SDSE, as it is related to veterinary medicine, and elucidated its zoonotic potential, in the context of molecular epidemiology and antimicrobial resistance in public health.