• Title/Summary/Keyword: Moment resisting joint

Search Result 59, Processing Time 0.032 seconds

Creep of Drift Pin Moment Resisting Joint of LVL under Changing RH (상대습도 변동하의 휨 모멘트가 작용하는 단판적층재 Drift Pin 접합부의 크리프 변형 거동)

  • 홍순일
    • Journal of Korea Foresty Energy
    • /
    • v.18 no.2
    • /
    • pp.84-91
    • /
    • 1999
  • The objective of this study was to present creep and the effects of mechano-sorptive deflection of drift pin moment resisting joint between LVL members under changing relative humidity (RH) conditions. The LVL members with steel gusset were jointed by a square pattern of eight injected drift pin. Three diameter drift pins were used to test specimens (6mm, 10mm, and 16mm). The creep test was conducted under two constant loading conditions : one at 30 kgf(840 kgf-cm) and the other at 60 kgf(1680 kgf-cm). The experiment was conducted in an open shed outside. (1)The total rotation creep model of moment resisting joing can be expressed as the sum of the creep of controlled environment (3-parameter model), dimensional change and mechano-sorptive deflection resulting from the variable environment. (2)Mechanosorptive rotation creep is recoverable as moisture content increases during adsorption. Least squares method for linear regression analysis was performed using mechano-sorptive rotation creep as the dependent variable and moisture content as the independent variable. The slope of low moment specimens are compared with those of high moment. This means that low moment condition is more easily affected by changes in humidity than high moment conditions. (3)Although creep deflection is higher for small diameter drift pin than for large diameter drift pin, the shape of creep deflection curves for all specimens is similar.

  • PDF

Joint Shear Failure of Reinforced Concrete Interior Beam-Column Joint (내부 보-기둥 접합부의 전단파괴)

  • 이민섭;홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.303-308
    • /
    • 2000
  • The design of column joint is an important part of earthquake resistant design of reinforced concrete moment resisting frames. Beam column joints must provide sufficient stiffness and strength to resist and sustain the loads induced by adjacent beams and columns. This paper investigates the difference of the current design codes which provide a different approach for the design of beam column joint in seismic zone. The model provided by Hitoshi Shiohara(1998) is reviewed in this paper, which provides a good relationship between moment and shear action of interior beam column joint and a role shear reinforcement according to their position.

  • PDF

Novel pin jointed moment connection for cold-formed steel trusses

  • Mathison, Chris;Roy, Krishanu;Clifton, G. Charles;Ahmadi, Amin;Masood, Rehan;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • v.31 no.5
    • /
    • pp.453-467
    • /
    • 2019
  • Portal frame structures, made up of cold-formed steel trusses, are increasingly being used for lightweight building construction. A novel pin-jointed moment connector, called the Howick Rivet Connector (HRC), was developed and tested previously in T-joints and truss assemblage to determine its reliable strength, stiffness and moment resisting capacity. This paper presents an experimental study on the HRC, in moment resisting cold-formed steel trusses. The connection method is devised where intersecting truss members are confined by a gusset connected by HRCs to create a rigid moment connection. In total, three large scale experiments were conducted to determine the elastic capacity and cyclic behaviour of the gusseted truss moment connection comprising HRC connectors. Theoretical failure loads were also calculated and compared against the experimental failure loads. Results show that the HRCs work effectively at carrying high shear loads between the members of the truss, enabling rigid behaviour to be developed and giving elastic behaviour without tilting up to a defined yield point. An extended gusset connection has been proposed to maximize the moment carrying capacity in a truss knee connection using the HRCs, in which they are aligned around the perimeter of the gusset to maximize the moment capacity and to increase the stability of the truss knee joint.

Experimental Study on the Effective Joint Width of the SRC Column-Steel Beam Joint (철골철근콘크리트 기둥-철골 보 접합부의 유효폭에 관한 실험적 연구)

  • 연선아;김승훈;서수연;이리형;홍원기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.405-410
    • /
    • 2001
  • To investigate factors influencing the effective width of. SRC column-steel beam joint resisting the moment as strut, six specimens are designed and tested. Parameters in the test are column width, beam height and horizontal tie within beam depth. From the test, using either wide column width or ties, strength and stiffness of joint were developed. The lower beam height the specimens showed the lower moment.

  • PDF

The Evaluation of Nonlinear response of the Ordinary Moment Resisting Frames using different analytical joint model (접합부 해석모델에 따른 보통모멘트철골골조의 비선헝 응답평가)

  • 원학재;한상환;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.222-229
    • /
    • 2000
  • The purpose of this study is to evaluate and make a comparison between the Ordinary Moment Resisting Frames using different analytical joint model for the Nonlinear response. For this purpose, 3-story structure was designed according to NEHRP 1994 Guidelines. And the center-line dimension model and model considering panel zone were used as analytical model for the structure. Nonlinear Static Procedure and Nonlinear Dynamic Procedure were used to evaluate seismic capacities and demands. The limitation in FEMA 273 was used as the variable number to predicte seismic demands of OMRFs. This analytical studies were performed with DRAIN-2DX modified by Shan Shi. Using the above results, the performance evaluation and seismic demands of OMRFs shall be performed. Finally NSP and NDP shall be compared.

  • PDF

Mechanics based force-deformation curve of steel beam to column moment joints

  • Kasar, Arnav A.;Bharti, S.D.;Shrimali, M.K.;Goswami, Rupen
    • Steel and Composite Structures
    • /
    • v.25 no.1
    • /
    • pp.19-34
    • /
    • 2017
  • The widespread damage to steel Moment Resisting Frames (MRFs) in past major earthquakes have underscored the need to understand the nonlinear inelastic behaviour of such systems. To assess the seismic performance of steel MRF, it is essential to model the nonlinear force-deformation behaviour of beam to column joints. To determine the extent of inelasticity in a beam to column joint, nonlinear finite element analysis is generally carried out, which is computationally involved and demanding. In order to obviate the need of such elaborate analyses, a simplistic method to predict the force-deformation behaviour is required. In this study, a simple, mechanics driven, hand calculation method is proposed to obtain the forcedeformation behaviour of strong axis beam to column moment joints. The force-deformation behaviour for twenty-five interior and exterior beam to column joints, having column to beam strength ratios ranging from 1.2 to 10.99 and 2.4 to 22, respectively, have been obtained. The force-deformation behaviour predicted using the proposed method is compared with the results of finite element analyses. The results show that the proposed method predicts the force-deformation behaviour fairly accurately, with much lesser computational effort. Further the proposed method has been used to conduct Nonlinear Dynamic Time History Analyses of two benchmark frames; close correspondence of results obtained with published results establishes the usefulness and computational accuracy of the method.

Comparison of Seismic Performance of Steel Moment Frame according to Different Analytic Joint Models (국내 철골골조의 접합부모델에 따른 내진성능 비교)

  • 이준석;한상환;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.317-323
    • /
    • 2000
  • The purpose of this study is to compare the seismic resistant capacity inherent in ductile moment resisting frames using two different joint modeling. The difference between these two models is the capability for considering the panel zone deformation. For this purpose, 5 story steel moment frame is designed in compliance to the Korean seismic design provisions and the steel structure design standard. Nonlinear Static Procedure(NSP) and Nonlinear Dynamic Procedure(NDP) of this structure are carried out using two different joint models. Based on the results of NSP and NDP, the sensitivity of the response to analytical modeling is appraised. Also, it is proposed that for the highrise steel structures, the joint deformation should be accounted properly by the analytical model.

  • PDF

Seismic Performance of Rib Plate H Beam to Column Connections (리브로 보강된 기둥-보 접합부의 내진성능 평가)

  • Kim, Sung-Yong;Shin, Chang-Hoon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.1 s.20
    • /
    • pp.9-16
    • /
    • 2006
  • The moment resisting frame has been well-known as it had very excellent seismic performance, and it has been widely used and constructed in the design of a lot of buildings. However, the moment resisting frame system did not exert the seismic performance during the earthquake in Northridge and Kobe sufficiently, and it produced the crack or brittle fracture on the joint. this study was to ]m tests with the full-scale test subject as parameters of existence of H-beam web high tensile bolt shearing joint and reinforcement of H-flange rib. This researcher was to anticipate the decrease of number of high tensile bolts and the improvement of workability through the double shear joint by the experiment, and improve the seismic performance through the reinforcement of rib plate. In addition, this study was to prevent the brittle fracture by the stress concentration through the non scallop.

Modeling of cyclic joint shear deformation contributions in RC beam-column connections to overall frame behavior

  • Shin, Myoungsu;LaFave, James M.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.5
    • /
    • pp.645-669
    • /
    • 2004
  • In seismic analysis of moment-resisting frames, beam-column connections are often modeled with rigid joint zones. However, it has been demonstrated that, in ductile reinforced concrete (RC) moment-resisting frames designed based on current codes (to say nothing of older non-ductile frames), the joint zones are in fact not rigid, but rather undergo significant shear deformations that contribute greatly to global drift. Therefore, the "rigid joint" assumption may result in misinterpretation of the global performance characteristics of frames and could consequently lead to miscalculation of strength and ductility demands on constituent frame members. The primary objective of this paper is to propose a rational method for estimating the hysteretic joint shear behavior of RC connections and for incorporating this behavior into frame analysis. The authors tested four RC edge beam-column-slab connection subassemblies subjected to earthquake-type lateral loading; hysteretic joint shear behavior is investigated based on these tests and other laboratory tests reported in the literature. An analytical scheme employing the modified compression field theory (MCFT) is developed to approximate joint shear stress vs. joint shear strain response. A connection model capable of explicitly considering hysteretic joint shear behavior is then formulated for nonlinear structural analysis. In the model, a joint is represented by rigid elements located along the joint edges and nonlinear rotational springs embedded in one of the four hinges linking adjacent rigid elements. The connection model is able to well represent the experimental hysteretic joint shear behavior and overall load-displacement response of connection subassemblies.

Cyclic test for beam-to-column abnormal joints in steel moment-resisting frames

  • Liu, Zu Q.;Xue, Jian Y.;Peng, Xiu N.;Gao, Liang
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1177-1195
    • /
    • 2015
  • Six specimens are tested to investigate the cyclic behavior of beam-to-column abnormal joints in steel moment-resisting frames, which are designed according to the principle of strong-member and weak-panel zone. Key parameters include the axial compression ratio of column and the section depth ratio of beams. Experimental results indicate that four types of failure patterns occurred during the loading process. The $P-{\Delta}$ hysteretic loops are stable and plentiful, but have different changing tendency at the positive and negative direction in the later of loading process due to mechanical behaviors of specimens. The ultimate strength tends to increase with the decrease of the section depth ratio of beams, but it is not apparent relationship to the axial compression ratio of column, which is less than 0.5. The top panel zone has good deformation capacity and the shear rotation can reach to 0.04 rad. The top panel zone and the bottom panel zone don't work as a whole. Based on the experimental results, the equation for shear strength of the abnormal joint panel zone is established by considering the restriction of the bottom panel zone to the top panel zone, which is suitable for the abnormal joint of H-shaped or box column and beams with different depths.