• Title/Summary/Keyword: Motion analysis

Search Result 6,989, Processing Time 0.033 seconds

Development of Sleeve Patterns of Structural Firefighting Protective Clothing using by 3D Body Shape and 3D Motion Analysis (3차원 인체형상과 3차원 동작분석에 의한 방화복 소매패턴 개발)

  • Han, Sul-Ah;Nam, Yun-Ja;Yoon, Hye-Jun;Lee, Sang-Hee;Kim, Hyun-Joo
    • Fashion & Textile Research Journal
    • /
    • v.14 no.1
    • /
    • pp.109-121
    • /
    • 2012
  • This study aims at developing ergonomics patterns for the sleeve of structural firefighting protective clothing through 3D motion analysis in order to ensure efficiency and safety of firefighters who are exposed to harmful environment at work. A new research pattern was developed by applying the total results of 3D motion analysis, changes of body surface length measurements, and 2D data on 3D body shape analysis on the size 3 patterns of the existing coat sleeve. For the sleeves, we used the body surface length of the range of shoulder's flexion and the joint angle of the range of wrist's ulnar deviation. And for the production of structural firefighting protective clothing using the research pattern, we recruited a recognized producer of structural firefighting protective clothing designated by KFI. Unlike everyday clothes, structural firefighting protective clothing should be able to fully protect the wearers from the harmful environment that threatens their lives and should not cause any restrictions on their movement. Therefore, the focus of research and development of such protective clothing should be placed on consistent development of new technologies and production methods that will provide protection and comfort for the wearer rather than production cost reduction or operational efficiency. This study is meaningful as it applied 3D motion analysis instead of the existing methods to develop the patterns. In particular, since 3D motion analysis enables the measurement of the range of motion, there should be continuous research on the development of ergonomics patterns that consider workers' range of motion.

Biomechanical Analysis of Arm Motion during Steering Using Motion Analysis Technique (동작분석기법을 이용한 조향동작에 대한 팔의 생체역학적 특성분석)

  • Kim, Young-Hwan;Tak, Tea-Oh
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1391-1398
    • /
    • 2011
  • Biomechanical analysis of arm motion during steering was performed using a motion analysis technique. Three-dimensional position data for each part of arm are fed into an interactive model combining a musculoskeletal arm model and the mechanical steering system to calculate joint angles and torques using inverse kinematic and dynamic analyses, respectively. The analysis shows that elbow pronation/supination, wrist flexion/extension, shoulder adduction/abduction, and shoulder flexion/extension have significant magnitudes. Sensitivity analysis of the arm joint motion with respect to seating posture and steering wheel configuration is carried out to investigate the qualitative influence of the seating posture and driver's seat configuration on the steering behavior.

Dynamics Analysis of a Multi-beam System Undergoing Overall Rigid Body Motion Employing Finite Element Method (유한요소법을 사용한 강체운동을 하는 다중보계의 동적 해석)

  • Choe, Sin;Yu, Hong-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2266-2273
    • /
    • 2000
  • Equations of motion of a multi-beam system undergoing overall rigid body motion are derived by employing finite element method. An orientation angle is employed to allow the arbitrary orientation o f the beam element. Modal coordinate reduction technique, which has been successfully utilized in the conventional linear modeling method, is employed for the present modeling method to reduce the computational effort. Different from the conventional linear modeling method, the present modeling method captures the motion-induced stiffness variations which are important for the dynamic analysis of structures undergoing overall rigid body motion. The numerical results are compared to those of a commercial program to verify the reliability of the present method.

Analysis for Angle, Center of Mass and Muscle Activity on Good and Bad Motion of the Pirouette in Ballet (발레 삐루엣 동작 수행정도에 따른 각도, 중심변인 및 근활동 분석)

  • Kwon, An-Sook
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.2
    • /
    • pp.181-187
    • /
    • 2011
  • The purpose of this study was to identify major factors on pirouette in ballet, and especially angle, Center of Mass(CM) & muscle activity aspects. The data were collected by using Motion Analysis System with 12 cameras to analyze kinematic variables with 120 Hz and Electromyography(EMG; 4,000 Hz) & Force Platform(1,000 Hz) to analyze kinetic variables. The subjects of this study were 8 female ballet dancers. The results as follow. First of all, full extension of knee joint and full plantar flexion of ankle joint appeared at the similar point. Secondly, in the rotational phase, total movement of segments in Good motion is smaller than that of Bad motion(in Good motion, head movement 2.70 cm, right shoulder movement 0.72 cm, left shoulder 4.26 cm, left wrist 17.4 mm smaller than Bad motion). Third, CoP distance of Good motion is 11.76 mm, and CoP distance of Bad motion is 11.76 mm, so Good motion is 5.98 mm smaller). Lastly, Pirouette need more retus femur activity than gastrocnemius activity in extention phase and rotation phase of support leg.

Motion Error Analysis of an Porous Air Bearing Table (다공질 공기베어링 테이블의 운동오차 해석)

  • Park, Cheon-Hong;Lee, Hu-Sang
    • 연구논문집
    • /
    • s.34
    • /
    • pp.101-112
    • /
    • 2004
  • In order to analyze the motion errors of the aerostatic stage, it is necessary to consider the influence of the moment variation occurredinside the pads. In this paper, a motion error anaysis method utilizing the transfer functions on the reaction force and moment is proposed, and general characteristics of the transfer functions are discussed. Calculated motion errors by the proposed method show good agreement with the ones calculated by Multi Pad Method, which is considered the entire table as an analysis object. Also, by the introduction of the transfer function of motion errors, which represent the relationship between the spatial frequency components of the rail form error and motion errors, motional characteristics of the porous aerostatic stage can be generalized. In detail, the influence of the spatial frequencies is analyzed quantatively, and the patterns of the insensitive frequencies which almost do not affect the linear motion error or angular motion error according to the rail length ratio and the number of the pad are verified. The relationship between the moment variation occurred inside the pads and the motion errors is also verified together.

  • PDF

Parametrized Construction of Virtual Drivers' Reach Motion to Seat Belt (매개변수로 제어가능한 운전자의 안전벨트 뻗침 모션 생성)

  • Seo, Hye-Won;Cordier, Frederic;Choi, Woo-Jin;Choi, Hyung-Yun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.4
    • /
    • pp.249-259
    • /
    • 2011
  • In this paper we present our work on the parameterized construction of virtual drivers' reach motion to seat belt, by using motion capture data. A user can generate a new reach motion by controlling a number of parameters. We approach the problem by using multiple sets of example reach motions and learning the relation between the labeling parameters and the motion data. The work is composed of three tasks. First, we construct a motion database using multiple sets of labeled motion clips obtained by using a motion capture device. This involves removing the redundancy of each motion clip by using PCA (Principal Component Analysis), and establishing temporal correspondence among different motion clips by automatic segmentation and piecewise time warping of each clip. Next, we compute motion blending functions by learning the relation between labeling parameters (age, hip base point (HBP), and height) and the motion parameters as represented by a set of PC coefficients. During runtime, on-line motion synthesis is accomplished by evaluating the motion blending function from the user-supplied control parameters.

Ingress/ Egress of Older Drivers Part 1: Analysis of Motion Characteristics (고령운전자의 승/하강 거동 Part 1: 특성 분석)

  • Choi, W.J.;Sha, S.J.;Choi, H.Y.
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.5
    • /
    • pp.381-392
    • /
    • 2009
  • Due to the aging effect, older people have relatively weaker muscular performance, less range of motion in the joint articulation, and the lower sense of equilibrium than younger people. These factors attribute to their slow and clumsy ingress/egress motion. In order to analyze ingress/egress motion strategy of the elderly, healthy thirty 65 or more years old volunteers were recruited. The health condition of the each volunteer was verified by the medical checkup and also their physical capabilities were quantified by six fitness tests. Through the video analysis, older driver's ingress/egress motion strategies were classified and statistically investigated. For a comparison purpose, another thirty young volunteers also participated in the same test protocol and their ingress/egress motion strategies were also included in the statistical analysis.

Automated Markerless Analysis of Human Gait Motion for Recognition and Classification

  • Yoo, Jang-Hee;Nixon, Mark S.
    • ETRI Journal
    • /
    • v.33 no.2
    • /
    • pp.259-266
    • /
    • 2011
  • We present a new method for an automated markerless system to describe, analyze, and classify human gait motion. The automated system consists of three stages: I) detection and extraction of the moving human body and its contour from image sequences, ii) extraction of gait figures by the joint angles and body points, and iii) analysis of motion parameters and feature extraction for classifying human gait. A sequential set of 2D stick figures is used to represent the human gait motion, and the features based on motion parameters are determined from the sequence of extracted gait figures. Then, a k-nearest neighbor classifier is used to classify the gait patterns. In experiments, this provides an alternative estimate of biomechanical parameters on a large population of subjects, suggesting that the estimate of variance by marker-based techniques appeared generous. This is a very effective and well-defined representation method for analyzing the gait motion. As such, the markerless approach confirms uniqueness of the gait as earlier studies and encourages further development along these lines.

Analysis and performance evaluation of the parallel typed for a vehicle driving simulator (병렬구조형 차량운전 모사장치의 성능평가 및 분석)

  • 박일경;박경균;김정하;이운성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1481-1484
    • /
    • 1997
  • The vehicle driving simulator expects vehicle motion with real-time simulation arise from driver's steering, accelerating, stopping and simulates motion of vehicl with visula, audio and washout algorithm. And it gives a vivid feeling to driver in reality. Vehicle driving simulator with vehicle integration control system is used for analysis of analysis of vehicle controllaility, steering capacity and safety in various pseudo environment alike. basides, it analyzeds vehicle safety factor dirver's reaction and promotes traffic safety without driver's own risks. The main proceduress of development of the vehicle driving simulator are classified by 3 parts. first the motion base system which can be generated by the motion queues, should be developed. Secondly, real-time vehicle software which can afford the vehicle dynamics, might be constructed. The third procedure is the integration of vehicle driing simulator which can be interconnected between visual systems with motion base. In this study, we are to study of the motion base for a vehicle driving simulator design and that of its real time control and using an extra gyro sensor and accelerometers to find a position and an orientatiion of the moving platform except for calculating forward kinematics. To drive the motion base, we use National Instruments corp's Labview software. Furthemore, we use analysis module for the vehicle motionand the washout algorithm module to consummate driving simulator, which can be driven by human in reality, so we are doing experimentally process about various vehicle motion conditon.

  • PDF

Finite Element Analysis on the Motion Accuracy of Hydrostatic Table(1.st. Analysis and Experimental Verification on Single-side Table) (FEM을 이용한 유정압테이블의 운동정밀도 해서(1. 단면지지형 테이블의 해석 및 실험적 검증))

  • Park, Cheon-Hong;Jeong, Jae-Hun;Lee, Hu-Sang;Kim, Su-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.137-144
    • /
    • 2000
  • In order to achieve systematical method for improving motion accuracy of hydrostatic table, an algorithm using finite element method is proposed in this paper. Quantification of averaging effect of oil film on motion error is performed theoretically by analysis on the relationship between spacial frequency of rail form error and motion error of table. Influences of film stiffness and pocket size on the motion error of table are also analyzed theoretically. Validity of the algorithm is verified experimentally from the test on the motion error of table with three types of rail which have different form profile. Experimental results show that the algorithm is very effective to analyze theoretically the motion error of hydrostatic table.

  • PDF