• Title, Summary, Keyword: Motion and Structure Estimation

Search Result 136, Processing Time 0.037 seconds

Temporal Prediction Structure and Motion Estimation Method based on the Characteristic of the Motion Vectors (시간적 예측 구조와 움직임 벡터의 특성을 이용한 움직임 추정 기법)

  • Yoon, Hyo Sun;Kim, Mi Young
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.10
    • /
    • pp.1205-1215
    • /
    • 2015
  • Efficient multi-view coding techniques are needed to reduce the complexity of multi-view video which increases in proportion to the number of cameras. To reduce the complexity and maintain image quality and bit-rates, an motion estimation method and temporal prediction structure are proposed in this paper. The proposed motion estimation method exploits the characteristic of motion vector distribution and the motion direction and motion size of the block to place search points and decide the search patten adaptively. And the proposed prediction structure divides every GOP to decide the maximum index of hierarchical B layer and the number of pictures of each B layer. Experiment results show that the complexity reduction of the proposed temporal prediction structure and motion estimation method over hierarchical B pictures prediction structure and TZ search method which are used in JMVC(Joint Multi-view Video Coding) reference model can be up to 45∼70% while maintaining similar video quality and bit rates.

An Efficient Motion Estimation Method Using Hierarchical Structure (계층적 구조를 이용한 효율적인 변위 추정 방법)

  • 황신환;이상욱
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.11
    • /
    • pp.913-924
    • /
    • 1991
  • In this paper, we propose a motion estimation algorithm using hierarchical structure. The algorithm uses the image pyramids from the repetitive application of Gaussian filtering and decimation, and performs an inter-level displacement propagation in its motion estimation process. The motion estimation algorithm based on the hierarchical structure is shown to be very effective since this scheme utilizes the local imformation as well as the global imformation. The experimental results on the various data imdicate that compared to the Horn and Schunck's method, the proposed algorithm yields an accurate motion estimation with a fast convergence behaviour.

  • PDF

Motion and Structure Estimation Using Fusion of Inertial and Vision Data for Helmet Tracker

  • Heo, Se-Jong;Shin, Ok-Shik;Park, Chan-Gook
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.1
    • /
    • pp.31-40
    • /
    • 2010
  • For weapon cueing and Head-Mounted Display (HMD), it is essential to continuously estimate the motion of the helmet. The problem of estimating and predicting the position and orientation of the helmet is approached by fusing measurements from inertial sensors and stereo vision system. The sensor fusion approach in this paper is based on nonlinear filtering, especially expended Kalman filter(EKF). To reduce the computation time and improve the performance in vision processing, we separate the structure estimation and motion estimation. The structure estimation tracks the features which are the part of helmet model structure in the scene and the motion estimation filter estimates the position and orientation of the helmet. This algorithm is tested with using synthetic and real data. And the results show that the result of sensor fusion is successful.

Low Power SAD Processor Architecture for Motion Estimation of K264 (K264 Motion Estimation용 저전력 SAD 프로세서 설계)

  • Kim, Bee-Chul;Oh, Se-Man;Yoo, Hyeon-Joong;Jang, Young-Beom
    • Proceedings of the IEEK Conference
    • /
    • /
    • pp.263-264
    • /
    • 2007
  • In this paper, an efficient SAD(Sum of Absolute Differences) processor structure for motion estimation of 0.264 is proposed. SAD processors are commonly used both in full search methods for motion estimation or in fast search methods for motion estimation. Proposed structure consists of SAD calculator block, combinator block, and minimum value calculator block. Especially, proposed structure is simplified by using Distributed Arithmetic for addition operation. The Verilog-HDL(Hard Description Language) coding and FPGA implementation results for the proposed structure show 39% and 32% gate count reduction comparison with those of the conventional structure, respectively. Due to its efficient processing scheme, the proposed SAD processor structure can be widely used in size dominant H.264 chip.

  • PDF

Variable Block Size Motion Estimation Techniques for The Motion Sequence Coding (움직임 영상 부호화를 위한 가변 블록 크기 움직임 추정 기법)

  • 김종원;이상욱
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.4
    • /
    • pp.104-115
    • /
    • 1993
  • The motion compensated coding (MCC) technique, which exploits the temporal redundancies in the moving images with the motion estimation technique,is one of the most popular techniques currently used. Recently, a variable block size(VBS) motion estimation scheme has been utilized to improve the performance of the motion compensted coding. This scheme allows large blocks to the used when smaller blocks provide little gain, saving rates for areas containing more complex motion. Hence, a new VBS motion estimation scheme with a hierarchical structure is proposed in this paper, in order to combine the motion vector coding technique efficiently. Topmost level motion vector, which is obtained by the gain/cost motion estimation technique with selective motion prediction method, is always transmitted. Thus, the hierarchical VBS motion estimation scheme can efficiently exploit the redundancies among neighboring motion vectors, providing an efficient motion vector encoding scheme. Also, a restricted search with respect to the topmost level motion vector enables more flexible and efficient motion estimation for the remaining lower level blocks. Computer simulations on the high resolution image sequence show that, the VBS motion estimation scheme provides a performance improvement of 0.6~0.7 dB, in terms of PSNR, compared to the fixed block size motion estimation scheme.

  • PDF

Efficient SAD Processor for Motion Estimation of H.264 (H.264 움직임 추정을 위한 효율적인 SAD 프로세서)

  • Jang, Young-Beom;Oh, Se-Man;Kim, Bee-Chul;Yoo, Hyeon-Joong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.2
    • /
    • pp.74-81
    • /
    • 2007
  • In this paper, an efficient SAD(Sum of Absolute Differences) processor structure for motion estimation of H.264 is proposed. SAD processors are commonly used both in full search methods for motion estimation and in fast search methods for motion estimation. Proposed structure consists of SAD calculator block, combinator block, and minimum value calculator block. Especially, proposed structure is simplified by using Distributed Arithmetic for addition operation. The Verilog-HDL(Hard Description Language) coding and FPGA(Field Programmable Gate Array) implementation results for the proposed structure show 39% and 32% gate count reduction in comparison with those of the conventional structure, respectively. Due to its efficient processing scheme, the proposed SAD processor structure can be widely used in size dominant H.264 chip.

Efficient Algorithms for Motion Parameter Estimation in Object-Oriented Analysis-Synthesis Coding (객체지향 분석-함성 부호화를 위한 효율적 움직임 파라미터 추정 알고리듬)

  • Lee Chang Bum;Park Rae-Hong
    • The KIPS Transactions:PartB
    • /
    • v.11B no.6
    • /
    • pp.653-660
    • /
    • 2004
  • Object-oriented analysis-synthesis coding (OOASC) subdivides each image of a sequence into a number of moving objects and estimates and compensates the motion of each object. It employs a motion parameter technique for estimating motion information of each object. The motion parameter technique employing gradient operators requires a high computational load. The main objective of this paper is to present efficient motion parameter estimation techniques using the hierarchical structure in object-oriented analysis-synthesis coding. In order to achieve this goal, this paper proposes two algorithms : hybrid motion parameter estimation method (HMPEM) and adaptive motion parameter estimation method (AMPEM) using the hierarchical structure. HMPEM uses the proposed hierarchical structure, in which six or eight motion parameters are estimated by a parameter verification process in a low-resolution image, whose size is equal to one fourth of that of an original image. AMPEM uses the same hierarchical structure with the motion detection criterion that measures the amount of motion based on the temporal co-occurrence matrices for adaptive estimation of the motion parameters. This method is fast and easily implemented using parallel processing techniques. Theoretical analysis and computer simulation show that the peak signal to noise ratio (PSNR) of the image reconstructed by the proposed method lies between those of images reconstructed by the conventional 6- and 8-parameter estimation methods with a greatly reduced computational load by a factor of about four.

Motion Estimation Using Dynamic Regular Mesh (동적 정규화 메쉬를 이용한 움직임 추정)

  • Lee, Dong-Gyu;Lee, Du-Su
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.6
    • /
    • pp.599-607
    • /
    • 2001
  • In Conventional BMA, the motion vector can describe only translational movement and blocking noise is generated. To overcome this defect, motion estimation using triangular mesh has been proposed. The regular mesh is the method of dividing the image area into equal size triangle and haying the same node connection. It has no additional information about mesh structure, but do not reflect the real motion because it represents the regions by equal mesh structure regardless of the amount of motion. In this paper, motion estimation using dynamic regular mesh is proposed, In this method, the mesh structure is varied from the amount of motion and maintain the form of regular mesh. By the simulation, proposed method have better performance in PSNR and is superior to the other method in convergence rate.

  • PDF

A New Refinement Method for Structure from Stereo Motion (스테레오 연속 영상을 이용한 구조 복원의 정제)

  • 박성기;권인소
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.11
    • /
    • pp.935-940
    • /
    • 2002
  • For robot navigation and visual reconstruction, structure from motion (SFM) is an active issue in computer vision community and its properties arc also becoming well understood. In this paper, when using stereo image sequence and direct method as a tool for SFM, we present a new method for overcoming bas-relief ambiguity. We first show that the direct methods, based on optical flow constraint equation, are also intrinsically exposed to such ambiguity although they introduce robust methods. Therefore, regarding the motion and depth estimation by the robust and direct method as approximated ones. we suggest a method that refines both stereo displacement and motion displacement with sub-pixel accuracy, which is the central process f3r improving its ambiguity. Experiments with real image sequences have been executed and we show that the proposed algorithm has improved the estimation accuracy.

Motion Boundary Detection and Motion Vector Estimation by spatio-temporal Gradient Method using a New Spatial Gradient (새로운 공간경사를 사용한 시공간 경사법에 의한 운동경계 검출 및 이동벡터 추정)

  • 김이한;김성대
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.2
    • /
    • pp.59-68
    • /
    • 1993
  • The motion vector estimation and motion boundary detection have been briskly studied since they are an important clue for analysis of object structure and 3-d motion. The purpose of this researches is more exact estimation, but there are two main causes to make inaccurate. The one is the erroneous measurement of gradients in brightness values and the other is the blurring of motion boundries which is caused by the smoothness constraint. In this paper, we analyze the gradient measurement error of conventional methods and propose new technique based on it. When the proposed method is applied to the motion boundary detection in Schunck and motion vector estimation in Horn & Schunck, it is shown to have much better performance than conventional method is some artificial and real image sequences.

  • PDF