• Title/Summary/Keyword: Motion generation algorithm

Search Result 143, Processing Time 0.025 seconds

A Gait Implementation of a Biped Robot Based on Intelligent Algorithm (지능 알고리즘 기반의 이족 보행로봇의 보행 구현)

  • Kang Chan-Soo;Kim Jin-Geol;Noh Kyung-Kon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1210-1216
    • /
    • 2004
  • This paper deals with a human-like gait generation of a biped robot with a balancing weight of an inverted pendulum type by using genetic algorithm. The ZMP (Zero Moment Point) is the most important index in a biped robot's dynamic walking stability. To perform a stable walking of a biped robot, a balancing motion is required according to legs' trajectories and a desired ZMP trajectory. A dynamic equation of the balancing motion is nonlinear due to an inverted pendulum type's balancing weight. To solve the nonlinear equation by the FDM (Finite Difference Method), a linearized model of equation is proposed. And GA (Genetic Algorithm) is applied to optimize a human-like balancing motion of a biped robot. By genetic algorithm, the index of the balancing motion is efficiently optimized, and a dynamic walking stability is verified by the ZMP verification equation. These balancing motion are simulated and experimented with a real biped robot IWR-IV. This human-like gait generation will be applied to a humanoid robot, at future work.

Motion Imitation Learning and Real-time Movement Generation of Humanoid Using Evolutionary Algorithm (진화 알고리즘을 사용한 인간형 로봇의 동작 모방 학습 및 실시간 동작 생성)

  • Park, Ga-Lam;Ra, Syung-Kwon;Kim, Chang-Hwan;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.10
    • /
    • pp.1038-1046
    • /
    • 2008
  • This paper presents a framework to generate human-like movements of a humanoid in real time using the movement primitive database of a human. The framework consists of two processes: 1) the offline motion imitation learning based on an Evolutionary Algorithm and 2) the online motion generation of a humanoid using the database updated bγ the motion imitation teaming. For the offline process, the initial database contains the kinetic characteristics of a human, since it is full of human's captured motions. The database then develops through the proposed framework of motion teaming based on an Evolutionary Algorithm, having the kinetic characteristics of a humanoid in aspect of minimal torque or joint jerk. The humanoid generates human-like movements far a given purpose in real time by linearly interpolating the primitive motions in the developed database. The movement of catching a ball was examined in simulation.

A New Washout Algorithm for Reappearance of Driving Perception of Simulator (운전 시뮬레이터의 주행감각 재현을 위한 새로운 가속도 모의 수법 알고리즘 개발)

  • 유기성;이민철
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.6
    • /
    • pp.519-528
    • /
    • 2004
  • For reappearance of driving perception in a driving simulator, a washout algorithm is required. This algorithm can reappear the vehicle driving motions within workspace of the driving simulator. However classical washout algorithm contains several problems such as selection of order, cut-off frequency of filters, generation of wrong motion cues by characteristics of filters, etc. In order to overcome these problems, this paper proposes a new washout algorithm which gives more accurate sensations to drivers. The algorithm consists of an artificial inclination of the motion plate and human perception model with band pass filter and dead zone. As a result of this study, the motion of a real car could be reappeared satisfactorily in the driving simulator and the workspace of motion plate is restrained without scaling factor.

Powerflow Simulation Software of the Automotive Powertrain through the Combination of the Components (I): Development of the Automatic Powerflow Generation Module (요소결합을 통한 파워트레인 시뮬레이션 소프트웨어 (I): 동력흐름 자동생성 모듈 개발)

  • 이승종;서정민
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.43-51
    • /
    • 2004
  • In this paper, the element combination algorithm for designing an arbitrary type of the automatic transmissions is proposed. The powertrain simulation software using this algorithm is then developed. The deliveries of the angular velocities and torques are only considered for the motion characteristics of the automatic transmissions. The effects of the vibration and noise are not considered. The automatic transmission is defined by the basic elements, i.e., planetary gear set, clutch, brake, shaft, general gear, and inertia. The transmission system is defined by the combination of these elements. The element combination matrices automatically generate the equations of motion for each shift. The self error-correcting algorithm is also developed to verify the element combination algorithm. This automotive powertrain simulation/design software with user-friendly graphic user interface has two main modules. The first module, the automatic powerflow generation module, mainly consists of the automatic powerflow and component generation algorithms. This paper covers the theory and application for the first module. The second module deals with the automatic system generation algorithm and will be discussed in the second paper.

Modifiable Walking Pattern Generation Handling Infeasible Navigational Commands for Humanoid Robots

  • Lee, Bum-Joo;Kim, Kab Il
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.344-351
    • /
    • 2014
  • In order to accomplish complex navigational commands, humanoid robot should be able to modify its walking period, step length and direction independently. In this paper, a novel walking pattern generation algorithm is proposed to satisfy these requirements. Modification of the walking pattern can be considered as a transition between two periodic walking patterns, which follows each navigational command. By assuming the robot as a linear inverted pendulum, the equations of motion between ZMP(Zero Moment Point) and CM(Center of Mass) state is easily derived and analyzed. After navigational command is translated into the desired CM state, corresponding CM motion is generated to achieve the desired state by using simple ZMP functions. Moreover, when the command is not feasible, feasible command is alternated by using binary search algorithm. Subsequently, corresponding CM motion is generated. The effectiveness of the proposed algorithm is verified by computer simulation.

Motion Field Estimation Using U-Disparity Map in Vehicle Environment

  • Seo, Seung-Woo;Lee, Gyu-Cheol;Yoo, Ji-Sang
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.428-435
    • /
    • 2017
  • In this paper, we propose a novel motion field estimation algorithm for which a U-disparity map and forward-and-backward error removal are applied in a vehicular environment. Generally, a motion exists in an image obtained by a camera attached to a vehicle by vehicle movement; however, the obtained motion vector is inaccurate because of the surrounding environmental factors such as the illumination changes and vehicles shaking. It is, therefore, difficult to extract an accurate motion vector, especially on the road surface, due to the similarity of the adjacent-pixel values; therefore, the proposed algorithm first removes the road surface region in the obtained image by using a U-disparity map, and uses then the optical flow that represents the motion vector of the object in the remaining part of the image. The algorithm also uses a forward-backward error-removal technique to improve the motion-vector accuracy and a vehicle's movement is predicted through the application of the RANSAC (RANdom SAmple Consensus) to the previously obtained motion vectors, resulting in the generation of a motion field. Through experiment results, we show that the performance of the proposed algorithm is superior to that of an existing algorithm.

Painterly Stroke Generation using Object Motion Analysis (객체의 움직임 해석을 이용한 회화적 스트로크 생성 방법)

  • Lee, Ho-Chang;Seo, Sang-Hyun;Ryoo, Seung-Tack;Yoon, Kyung-Hyun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.4
    • /
    • pp.239-245
    • /
    • 2010
  • Previous painterly rendering techniques normally use image gradients for stroke generation. Although image gradients are useful for expressing object shapes, it is difficult to express the flow or movements of objects of objects. In real painting, the use of brush strokes corresponding to the actual movement of objects allows viewers to recognize objects’ motion better and express the liveliness of the objects much more. In this paper, we propose a novel painterly stroke generation algorithm to express dynamic objects based on their motion information. We first extract motion information (magnitude, direction) of a scene from a set of image sequences from the same view. Then the motion directions are used for determining stroke orientations in the regions with significant motions. Where little motion is observed, image gradients are used for determining stroke orientations. Our algorithm is useful for realistically and dynamically representing moving objects.

Real-Time Generation of Humanoid Motion with the Motion-Embedded COG Jacobian

  • Kim, Do-Ik;Choi, Young-Jin;Oh, Yong-Hwan;You, Bum-Jae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2148-2153
    • /
    • 2005
  • For a legged robot such as a humanoid, balancing its body during a given motion is natural but the most important problem. Recently, a motion given to a humanoid is more and more complicated, and thus the balancing problem becomes much more critical. This paper suggests a real-time motion generation algorithm that guarantees a humanoid to be balanced during the motion. A desired motion of each arm and/or leg is planned by the conventional motion planning method without considering the balancing problem. In order to balance a humanoid, all the given motions are embedded into the COG Jacobian. The COG Jacobian is modified to include the desired motions and, in consequence, dimension of the COG Jacobian is drastically reduced. With the motion-embedded COG Jacobian, balancing and performing a task is completed simultaneously, without changing any other parameters related to the control or planning. Validity and efficiency of the proposed motion-embedded COG Jacobian is simulated in the paper.

  • PDF

Block-Centered Symmetric Motion Estimation for Side Information Generation in Distributed Video Coding (분산 비디오 부호화에서 보조정보 생성을 위한 블록중심 대칭형의 움직임 탐색 기법)

  • Lee, Chan-Hee;Kim, Jin-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.6
    • /
    • pp.35-42
    • /
    • 2010
  • Side information generation techniques play a great role in determining the overall performance of the DVC (Distributed Video Coding) coding system. Most conventional techniques for side information generation are mainly based on the block matching algorithm with symmetric motion estimation between the previously reconstructed key frames. But, these techniques tend to show mismatches between the motion vectors and the real placements of moving objects. So these techniques need to be modified so as to search well the real placements of moving objects. To overcome this problem, this paper proposes a block-centered symmetric motion estimation technique which uses the same coordinates with the given block. Through computer simulations, it is shown that the proposed algorithm outperforms the conventional schemes in the objective quality.