• 제목/요약/키워드: Movement and Deformation Model

검색결과 98건 처리시간 0.027초

측방변형지반속 매설관 주변지반의 파괴모드 (Soil Failure Mode of a Buried Pipe Around in Soil Undergoing Lateral Movement)

  • 홍원표;한중근
    • 한국환경복원기술학회지
    • /
    • 제5권5호
    • /
    • pp.11-21
    • /
    • 2002
  • A series of model tests is performed to evaluate the relationship between soil and a buried pipe in soil undergoing lateral movement. As the result of the model tests, a wedge zone and plastic flow zones could be observed in front of the pipe. And also an arc failure of cylindrical cavity could be observed at both upper and lower zones. Failure shapes in both cohesionless and cohesive soils are nearly same, which was investigated failure angle of $45^{\circ}+{\phi}/2$. In the cohesionless soil, the higher relative density produces the larger arc of cylindrical cavity. On the basis of failure mode observed from model tests, the lateral earth pressure acting on a buried pipe in soil undergoing lateral movement could be applying the cylindrical cavity extension mode. The deformation behavior of soils was typically appeared in three divisions, which are elastic zones, plastic zones and pressure behavior zones.

실트질 모래의 비배수 크리프특성 및 크리프 모델 비교연구 (Undrained Creep Characteristics of Silty Sands and Comparative Study of Creep model)

  • 봉태호;손영환;노수각;박재성
    • 한국농공학회논문집
    • /
    • 제54권1호
    • /
    • pp.19-26
    • /
    • 2012
  • Soils exhibit creep behavior in which deformation and movement proceed under a state of constant stress or load. In this study, A series of triaxial tests were performed under constant principal stress in order to interpret the undrained creep characteristics of silty sands. Although samples are non-plastic silty sands, the results of tests show that the creep deformation increasing over time. Based on the results of test, Singh-Mitchell model parameters and Generalized model coefficients were calculated. Generalized model showed slightly larger deformation in the primary creep range but secondary creep deformation was almost identical. Although Singh-Mitchell model showed relatively large errors compared to Generalized model because it uses the average of test results, but Singh-Mitchell model can be easily represented by three creep parameters.

연약지반의 측방유동으로 인하여 매설관에 작용하는 측방토압 (Lateral Earth Pressures on Buried Pipes due to Lateral Flow of Soft Grounds)

  • 홍원표;김재홍
    • 한국지반환경공학회 논문집
    • /
    • 제11권9호
    • /
    • pp.27-38
    • /
    • 2010
  • 모형실험과 유한요소법에 의한 수치해석을 통하여 측방변형지반 속에 설치된 매설관에 작용하는 측방토압을 관찰하였다. 모형실험에서는 모형지반 속에 매설관을 설치한 후 모형지반에 측방변형이 발생될 수 있게 모형실험기를 제작하여 실제 지반에서의 상황을 시뮬레이션하였다. 이 모형실험기는 지반의 변형속도를 여러 가지로 조절할 수 있게 제작하였다. 여러 가지 직경과 형상의 매설관에 대하여 실험을 실시함으로써 이들 요인이 측방토압에 미치는 영향을 조사하였다. 모형실험결과 연약지반의 측방유동으로 인하여 매설관에 작용하는 측방하중은 연약지반의 측방변형속도가 빠를수록 크게 작용하였다. 순간재하 조건에 의한 수치해석 결과는 지반변형속도가 중간 정도 빠르기인 0.3mm/min에서 1.0mm/min 사이의 지반변형속도의 조건에서 실시한 모형실험 결과와 유사하였다. 대부분의 모형실험결과 지반변형량이 작은 시점에서 측방하중의 제1항복이 발생하며 이때까지 탄성변형거동을 보이다가 제2항복에 이르기까지 하중이 한 동안 수렴되는 소성거동을 보였다. 지반변형이 계속하여 증가하면 측방하중도 다시 증가하여 압축거동을 보였다. 그러나 빠른 지반변형속도에서의 실험 결과에서는 항복하중에 도달한 후 수렴과정이 없이 계속하여 하중이 증가하였음을 볼 수 있다. 매설관의 직경이 클수록 측방유동 연약지반 속에 설치된 매설관에 작용하는 측방하중의 크기와 하중증가 속도가 컸으며 초기지반변형에서는 측방하중이 매설관의 직경 및 형상의 영향을 적게 받지만 지반변형량이 증가함에 따라 그 영향이 크게 나타났다.

변형연화모델을 이용한 미고결 지반의 터널변형 (Tunnel Deformation in Shallow Unconsolidated Ground by Using Strain-Softening Model)

  • 서인식;김병탁
    • 한국산업융합학회 논문집
    • /
    • 제10권2호
    • /
    • pp.81-88
    • /
    • 2007
  • In case of an urban tunnel, the displacement of ground base controls the tunnel design because it is built on shallow and unconsolidated ground many times. There are more insufficiency to describe the ground movement which coincides in the measured result of the situ because the design of an urban tunnel is dependent on the method of numerical analysis used to the existing elastic and elasto-plastic models. We studied about the prediction for the ground movement of a shallow tunnel in unconsolidated ground, mechanism of collapse, and settlement. Also this paper shows comparison with the existing elastic and elasto-plastic model using the unlinear analysis of the strain-softening model. We can model the real ground movement as the increasement of ground surface inclination or occurrence of shear band by using strain-softening model for the result of ground movement of an urban NATM tunnel.

  • PDF

Inversion Research on the shortening and Sliding of Drape Zones between Chinese Continent Blocks by GPS Data

  • Zhixing, Du;Fanlin, Yang;Xinzhou, Wang;Xiushan, Lu;Huizhan, Zhang
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.1
    • /
    • pp.401-405
    • /
    • 2006
  • A uniform velocity field of crust can be obtained by cumulative multi-year GPS data. Then the shortening and sliding of drape zones between Chinese Continent Blocks can be researched through the velocity field and dynamics meaning is also analyzed. A model of movement and strain is created to extract displacing and rotating information of blocks in this paper. On the basis of it, the shortening vectors and sliding states of drape zones between blocks can be obtained by the model of level center of gravity moving velocity vectors between neighboring blocks. Some result show as follows. India plate jostles greatly toward north, so a complicated movement situation is formed for 14 sub-blocks. And self-deformations of inner tectosomes can be greatly reflected according to the characteristics of drape zones between tectosomes. The extrusion deformation exists between Himalaya and Qiangtang blocks. Its contraction ratio is about 20.1 $mm.a^{-1}$. However, it only is $mm.a^{-1}$ between Tarim and Zhungar. The deformation characteristics and contraction ratio of other drape zones are obviously different with the former. The movement characteristics of contraction, shear, dislocation, etc. are showed in these zones. The average contraction ratio is about 5.0 $mm.a^{-1}$. The whole trend in the west continent has a big movement toward north, and in the east continent has a small movement toward south or southeast. The strain of west continent is far bigger than that of east, and the strain of southwest is bigger than that of the southeast. It is whole showed that India plate jostles toward north-east and the south-north zone has cutting and absorbing phenomena. The total characteristics and present-day trends of deformation of inland drape zones are basically described by the sinistrorse dislocation in south-north zone and Arjin fracture, the sinistrorse shear between south china and north china, etc.

  • PDF

소성변형의 분자론 (제1보). 이론 (Molecular Theory of Plastic Deformation (I). Theory)

  • 김창홍;이태규
    • 대한화학회지
    • /
    • 제21권5호
    • /
    • pp.330-338
    • /
    • 1977
  • 고체의 소성변형을 설명하기 위하여 다음과 같은 가정을 하였다. (1) 고체의 소성변형은 크게 두 가지 기구 즉 dislocation 운동과 grain boundary 운동에 의하여 일어난다. (2) Dislocation 운동에 있어서 유동 단위들은 역학적 모형으로 나타내면 다종의 Maxwell 단위들의 평행연결형으로 되고 grain boundary 유동단위들도 다종의 Maxwell 단위들의 평행연결로 표현된다. 이를 물리적으로 설명하면 같은 부류의 유동단위들은 모두 같은 shear plane에서 같은 shear rate로 흐름을 의미한다. (3) Grain boundary 유동단위들과 dislocation 유동단위들 같은 서로 직렬 연결되어 있다. 이는 물리적으로 고체내에서 stress는 균일하게 작용하나 shear rate는 shear plane 의 종류(dislocation 운동면과 grain boundary 운동면)에 따라 달리 나타남을 의미한다. (4) Dislocation 유동단위들과 grain boundary 운동단위들의 운동은 그들의 흐름을 방해하는 장애물 근방의 원자 또는 분자들이 확산해 나가므로써 가능하게 된다. 이러한 가정하에 반응속도론을 적용하여 shear rate와 shear stress를 구하는 일반식을 도출하였다. 본 연구에서는 실제로 중요한 네가지 경우에 대하여 상기 도출한 일반식을 고찰하였다.

  • PDF

Numerical investigation on overburden migration behaviors in stope under thick magmatic rocks

  • Xue, Yanchao;Wu, Quansen;Sun, Dequan
    • Geomechanics and Engineering
    • /
    • 제22권4호
    • /
    • pp.349-359
    • /
    • 2020
  • Quantification of the influence of the fracture of thick magmatic rock (TMR) on the behavior of its overlying strata is a prerequisite to the understanding of the deformation behavior of the earth's surface in deep mining. A three-dimensional numerical model of a special geological mining condition of overlying TMR was developed to investigate the overburden movement and fracture law, and compare the influence of the occurrence horizon of TMR. The research results show that the movement of overlying rock was greatly affected by the TMR. Before the fracture of TMR, the TMR had shielding and controlling effects on the overlying strata, the maximum vertical and horizontal displacement values of overlying strata were 0.68 m and 0.062 m. After the fracture, the vertical and horizontal displacements suddenly increased to 3.06 m and 0.105 m, with an increase of 350% and 69.4%, respectively, and the higher the occurrence of TMR, the smaller the settlement of the overlying strata, but the wider the settlement span, the smaller the corresponding deformation value of the basin edge (the more difficult the surface to crack). These results are of tremendous importance for the control of rock strata and the revealing of surface deformation mechanism under TMR mining conditions in mines.

전위 및 공공을 고려한 고변형률 변형에 대한 재료 시뮬레이션 (A Material Simulation of High-Strain-Rate Deformation with Dislocations and Vacancies)

  • 최덕기;유한규
    • 대한기계학회논문집A
    • /
    • 제28권9호
    • /
    • pp.1306-1313
    • /
    • 2004
  • This paper addresses a theoretical approach to calculate the amount of the stored energy during high strain-rate deformations using atomistic level simulation. The dynamic behavior of materials at high strain-rate deformation are of great interest. At high strain-rates deformations, materials generate heat due to plastic work and the temperature rise can be significant, affecting various properties of the material. It is well known that a small percent of the energy input is stored in the material, and most of input energy is converted into heat. However, microscopic analysis has not been completed without construction of a material model, which can simulate the movement of dislocations and vacancies. A major cause of the temperature rise within materials is traditionally credited to dislocations, vacancies and other defects. In this study, an atomistic material model for FCC such as copper is used to calculate the stored energy.

유한요소해석을 이용한 롤러헤밍 공정의 변형기구 분석 (Deformation Mechanism of the Roller Hemming Process with the Finite Element Analysis)

  • 노재동;곽종환;김세호;주용현;김정호;신현식
    • 소성∙가공
    • /
    • 제25권5호
    • /
    • pp.325-331
    • /
    • 2016
  • In this paper, a three-dimensional part model is constructed for the finite element analysis of hemming models where hemming defects frequently occur. The roller path is modeled as the boundary condition with the one-dimensional beam element and the revolute joint model. With the constructed part model and the roller movement, a finite element analysis has been pursued in order to identify the hemming load and hemming defects such as wrinkling in the flange region. The analysis result shows that the maximum hemming load occurs in the intake situation while oscillatory behavior of the load is found especially when hemming the curved model because of wrinkle generation. This paper compares the amplitude and the period of wrinkle between the analysis result and the experiment, which shows good agreement with each other.

Response of a laterally loaded pile group due to cyclic loading in clay

  • Shi, Jiangwei;Zhang, Yuting;Chen, Long;Fu, Zhongzhi
    • Geomechanics and Engineering
    • /
    • 제16권5호
    • /
    • pp.463-469
    • /
    • 2018
  • In offshore engineering, lateral cyclic loading may induce excessive lateral movement and bending strain in pile foundations. Previous studies mainly focused on deformation mechanisms of single piles due to lateral cyclic loading. In this paper, centrifuge model tests were conducted to investigate the response of a $2{\times}2$ pile group due to lateral cyclic loading in clay. After applying each loading-unloading cycle, the pile group cannot move back to its original location. It implies that residual movement and bending strain are induced in the pile group. This is because cyclic loading induces plastic deformation in the soil surrounding the piles. As the cyclic load increases from 62.5 to 375 kN, the ratio of the residual to the maximum pile head movements varies from 0.30 to 0.84. Moreover, the ratio of the residual to the maximum bending strains induced in the piles is in a range of 0.23 to 0.82. The bending strain induced in the front pile is up to 3.2 times as large as that in the rear pile. Thus, much more protection measures should be applied to the front piles to ensure the serviceability and safety of pile foundations.