• Title/Summary/Keyword: Multi wave length module

Search Result 4, Processing Time 0.018 seconds

Study on the MTTF of Multi Wave Lengths IR and NIR LEDs Module (다파장 IR과 NIR 모듈의 평균 수명 예측에 관한 연구)

  • Kim, Dong Pyo;Kim, Kyung Seob
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.1
    • /
    • pp.44-49
    • /
    • 2021
  • Recently, infrared (IR) and near-infrared (NIR) light-emitting diodes (LEDs) were widely used for home medical applications owing to its low output power and wide exposed area for curing. For deep penetration of the light under the skin, multiple LEDs with wavelengths of 700~10,000 nm were located on a flexible printed circuit board. When multiple wavelengths of LEDs were soldered on a circuit board, the lifetime of LED module highly depends on LEDs with a short lifetime. The mean time to failure (MTTF) was able to calculate with the experimental results under high temperature and the Arrhenius model. The results of this study could help companies to approve the warranty of LED modules and its product.

Transmit-receive Module for Ka-band Seekers using Multi-layered Liquid Crystal Polymer Substrates (다층 액정폴리머 기판을 이용한 Ka대역 탐색기용 송수신 모듈)

  • Choi, Sehwan;Ryu, Jongin;Lee, Jaeyoung;Lee, Jiyeon;Nam, ByungChang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.5
    • /
    • pp.63-70
    • /
    • 2020
  • In this paper, the transmit-receive module for military seekers has been designed and fabricated in 35 GHz. To increase the performance of substrates and high integration of circuits in millimeter-wave band, a 4-layer LCP(Liquid Crystal Polymer) substrate was developed. This substrate was implemented with three FCCL substrates and two adhesive layers, and a process using the difference in melting point between the substrates was used for lamination. Using a strip line and a microstrip line was confirmed by the transmission loss along the length of the substrate, and the performance of LCP substrates was validated with a power divider in 35 GHz. After confirming the performance of individual blocks such as power amplifier and low noise amplifier, a single channel Ka-band transmission/reception module was developed using a 4-layer liquid crystal polymer substrate. The transmit power of this module has above 1.1W in pulse duty 10% and has an output power of 1.1W and it has receive noise figure less than 8.5 dB and receive gain more than 17.6 dB.

Various Pulse Forming of Pulsed $CO_2$ laser using Multi-pulse Superposition Technique

  • Chung, Hyun-Ju;Kim, Hee-Je
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.11C no.4
    • /
    • pp.127-132
    • /
    • 2001
  • We describe the pulse forming of pulsed $CO_2$laser using multi-pulse superposition technique. A various pulse length, high duty cycle pulse forming network(PFN) is constructed by time sequence. That is, this study shows a technology that makes it possible to make various pulse shapes by turning on SCRs of three PFN modules consecutively at a desirable delay time with the aid of PIC one-chip microprocessor. The power supply for this experiment consists of three PFN modules. Each PFN module uses a capacitor, a pulse forming inductor, a SCR, a High voltage pulse transformer, and a bridge rectifier on each transformer secondary. The PFN modules operate at low voltage and drive the primary of HV pulse transformer. The secondary of the transformer has a full-wave rectifier, which passes the pulse energy to the load in a continuous sequence. We investigated laser pulse shape and duration as various trigger time intervals of SCRs among three PFN modules. As a result, we can obtain laser beam with various pulse shapes and durations from about 250 $mutextrm{s}$ to 600 $mutextrm{s}$.

  • PDF

Fabrication process and device characterization of distributed feedback InGaAsP/InP laser diodes for optical fiber communication module (광통신 모듈용 분포 귀환형 InGaAsP/InP 레이저 다이오드 제작 및 소자 특성평가)

  • Jeon, Kyung-Nam;Kim, Keun-Joo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.131-138
    • /
    • 2011
  • We fabricated distributed feedback InGaAsP/InP laser diodes for optical fiber communication module and characterized the lasing properties in continuous wave operation. The active layer of 7-period InGaAsP(1.127 eV)/InGaAsP(0.954 eV) multi-quantum well structure was grown by the metal-organic chemical vapor deposition. The grating for waveguide was also fabricated by the implementation of the Mach-Zehender holographic method of two laser beams interference of He- Cd laser and the fabricated laser diode has the dimension of the laser length of $400{\mu}m$ and the ridge width of $1.2{\mu}m$. The laser diode shows the threshold current of 3.59 mA, the threshold voltage of 1.059 V. For the room-temperature operation with the current of 13.54 mA and the voltage of 1.12 V, the peak wavelength is about 1309.70 nm and optical power is 13.254 mW.