• Title/Summary/Keyword: Multi-contact Coupling

Search Result 13, Processing Time 0.027 seconds

A Study on the Design of ZVS Multi-Resonant Forward Converter for Non-contact Charging (비접촉 충전을 위한 ZVS 다중공진 포워드 컨버터의 설계에 관한 연구)

  • 김영길;김진우;박진홍;이종규;이성백
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.70-76
    • /
    • 2000
  • In the charge system, a contact type-convenient-charging method is insufficient because of the contact failure around moist environment and troublesome question to put in and pull out. For the solution of this problem, an electromagnetically coupled non-contact charger for the rechargeable cell is proposed using ZVS multi-resonant forward converter with synchronous rectifier. In this paper coupling coefficient(k), leaking inductance, coupling inductance and resonant frequency are observed for the air gap. By using the observed value, this circuit is designed and implemented. This proposed circuit is simulated by the PSPICE and experimented. The stress of a main switch and the output power are measured.

  • PDF

Toward Transparent Virtual Coupling for Haptic Interaction during Contact Tasks (컨택트 작업 시 햅틱 인터렉션의 투명성 향상을 위한 Virtual Coupling 기법의 설계)

  • Kim, Myungsin;Lee, Dongjun
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.3
    • /
    • pp.186-196
    • /
    • 2013
  • Since its introduction (e.g., [4, 6]), virtual coupling technique has been de facto way to connect a haptic device with a virtual proxy for haptic rendering and control. However, because of the single dependence on spring-damper feedback action, this virtual coupling suffers from the degraded transparency particularly during contact tasks when large device/proxy-forces are involved. In this paper, we propose a novel virtual coupling technique, which, by utilizing passive decomposition, reduces device-proxy position deviation even during the contact tasks while also scaling down (or up) the apparent inertia of the coordinated device-proxy. By doing so, we can significantly improve transparency between multiple degree of freedom (possibly nonlinear) haptic device and virtual proxy. In other to use passive decomposition, disturbance observer of [3] is adopted to estimate human force with some dead-zone modification to avoid "winding-up" force estimation in the presence of device torque saturation. Some preliminary experimental results are also given to illustrate efficacy of the proposed technique.

The Study on Forward ZVS MRC for Non-contact Charging Energy Transmission (비접촉 충전 에너지 전달을 위한 포워드형 ZVS MRC에 관한 연구)

  • 김영길;김진우;김태웅;원영진;이성백
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.2
    • /
    • pp.64-72
    • /
    • 2001
  • In this paper, forward Zero Voltage Switching Multi Resonant Converter(ZVS MRC) for non-contact charging energy transmission is reposed. The forward ZVS MRC is effective in adsorbing parasitic element as well as minimizing the switching loss. That can accommodate very high frequency. So forward ZVC MRC is applied to non-contact charging energy transmission. Used converter has saperatable transformer and synchronous rectifiers. Coupling coefficient(k), leakage inductance, coupling inductance and resonant frequency are observed for the air gap. By using the observed value, this circuit is designed and implemented. This proposed circuit is simulated by the PSPICE and experimented. The voltage stress of a main switch and the output power of the converter are measured. This paper show that is compatible for non-contact charging energy transmission.

  • PDF

A Design of ZVS Multi-Resonant Forward Converter for Non-contact Charging (비접촉 충전을 위한 ZVS 다중공진 포워드 컨버터의 설계)

  • Kim, Young-Gil;Na, Hee-Su;Kim, Jin-Woo;Lee, Sung-Paik
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1300-1302
    • /
    • 2000
  • In the charge system, a contact type-convenient-charging method is insufficient because of the contact failure around moist environment and troublesome question to put in and pull out. For the solution of this problem, an electromagnetically coupled non-contact charger for the rechargeable cell is proposed using ZVS multi-resonant forward converter. In this paper magnetizing inductance, leakage inductance and coupling coefficient, k are observed. By using the obserbed value, the proposed circuit is simulated by the PSPICE and implemented and the peak voltage of switch and output power are measured.

  • PDF

Towards grain-scale modelling of the release of radioactive fission gas from oxide fuel. Part II: Coupling SCIANTIX with TRANSURANUS

  • G. Zullo;D. Pizzocri;A. Magni;P. Van Uffelen;A. Schubert;L. Luzzi
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4460-4473
    • /
    • 2022
  • The behaviour of the fission gas plays an important role in the fuel rod performance. In a previous work, we presented a physics-based model describing intra- and inter-granular behaviour of radioactive fission gas. The model was implemented in SCIANTIX, a mesoscale module for fission gas behaviour, and assessed against the CONTACT 1 irradiation experiment. In this work, we present the multi-scale coupling between the TRANSURANUS fuel performance code and SCIANTIX, used as mechanistic module for stable and radioactive fission gas behaviour. We exploit the coupled code version to reproduce two integral irradiation experiments involving standard fuel rod segments in steady-state operation (CONTACT 1) and during successive power transients (HATAC C2). The simulation results demonstrate the predictive capabilities of the code coupling and contribute to the integral validation of the models implemented in SCIANTIX.

A Study on Vibration Characteristics in Water Tank with Multi-panels (복수 평판으로 이루어진 접수 탱크 구조물의 진동 특성에 관한 연구)

  • Bae, S.Y.
    • Journal of Power System Engineering
    • /
    • v.14 no.6
    • /
    • pp.67-74
    • /
    • 2010
  • Many tanks are installed in ship and marine structures. They are often in contact with inner or outer fluid, like ballast, fuel and cargo tanks. Fatigue damages are sometimes observed in these tanks which seem to be caused by resonance with exciting force of engine and propeller. Vibration characteristics of these thin walled tanks in contact with fluid near engine and propeller are strongly affected by added mass of containing fluid. Therefore it is essentially important to estimate the added mass effect to predict vibration of the tanks. Many authors have studied vibration of cylindrical and rectangular tanks containing fluid. Few research on dynamic interaction among tank walls through fluid are reported in the vibration of rectangular tanks recently. In case of rectangular tanks, structural coupling between adjacent panels and effect of vibration modes of multiple panels on added mass have to be considered. In the previous report, A numerical tool of vibration analysis of a 3-dimensional tank is developed by using finite element method for plates and boundary element method for fluid region. In this paper, the coupling effect between panels of a tank on added mass of containing fluid, the effect of structural constraint between panels on each vibration mode for fluid region and mode characteristics in accordance with changing breadth of the plates are investigated numerically and discussed.

Prediction of PTO Power Requirements according to Surface energy during Rotary Tillage using DEM-MBD Coupling Model (이산요소법-다물체동역학 연성해석 모델을 활용한 로타리 경운작업 시 표면 에너지에 따른 PTO 소요동력 예측)

  • Bo Min Bae;Dae Wi Jung;Jang Hyeon An;Se O Choi;Sang Hyeon Lee;Si Won Sung;Yeon Soo Kim;Yong Joo Kim
    • Journal of Drive and Control
    • /
    • v.21 no.2
    • /
    • pp.44-52
    • /
    • 2024
  • In this study, we predicted PTO power requirements based on torque predicted by the discrete element method and the multi-body dynamics coupling method. Six different scenarios were simulated to predict PTO power requirements in different soil conditions. The first scenario was a tillage operation on cohesionless soil, and the field was modeled using the Hertz-Mindlin contact model. In the second through sixth scenarios, tillage operations were performed on viscous soils, and the field was represented by the Hertz-Mindlin + JKR model for cohesion. To check the influence of surface energy, a parameter to reproduce cohesion, on the power requirement, a simple regression analysis was performed. The significance and appropriateness of the regression model were checked and found to be acceptable. The study findings are expected to be used in design optimization studies of agricultural machinery by predicting power requirements using the discrete element method and the multi-body dynamics coupling method and analyzing the effect of soil cohesion on the power requirement.

Strain-induced enhancement of thermal stability of Ag metallization with Ni/Ag multi-layer structure

  • Son, Jun-Ho;Song, Yang-Hui;Kim, Beom-Jun;Lee, Jong-Ram
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.157-157
    • /
    • 2010
  • Vertical-structure light-emitting diodes (V-LEDs) by laser lift-off (LLO) have been exploited for high-efficiency GaN-based LEDs of solid-state lightings. In V-LEDs, emitted light from active regions is reflected-up from reflective ohmic contacts on p-GaN. Therefore, silver (Ag) is very suitable for reflective contacts due to its high reflectance (>95%) and surface plasmon coupling to visible light emissions. In addition, low contact resistivity has been obtained from Ag-based ohmic contacts annealed in oxygen ambient. However, annealing in oxygen ambient causes Ag to be oxidized and/or agglomerated, leading to degradation in both electrical and optical properties. Therefore, preventing Ag from oxidation and/or agglomeration is a key aspect for high-performance V-LEDs. In this work, we demonstrate the enhanced thermal stability of Ag-based Ohmic contact to p-GaN by reducing the thermal compressive stress. The thermal compressive stress due to the large difference in CTE between GaN ($5.6{\times}10^{-6}/^{\circ}C$) and Ag ($18.9{\times}10^{-6}/^{\circ}C$) accelerate the diffusion of Ag atoms, leading to Ag agglomeration. Therefore, by increasing the additional residual tensile stress in Ag film, the thermal compressive stress could be reduced, resulting in the enhancement of Ag agglomeration resistance. We employ the thin Ni layer in Ag film to form Ni/Ag mutli-layer structure, because the lattice constant of NiO ($4.176\;{\AA}$ is larger than that of Ag ($4.086\;{\AA}$). High-resolution symmetric and asymmetric X-ray diffraction was used to measure the in-plane strain of Ag films. Due to the expansion of lattice constant by oxidation of Ni into NiO layer, Ag layer in Ni/Ag multi-layer structure was tensilely strained after annealing. Based on experimental results, it could be concluded that the reduction of thermal compressive stress by additional tensile stress in Ag film plays a critical role to enhance the thermal stability of Ag-based Ohmic contact to p-GaN.

  • PDF

High-temperature ultrasonic thickness monitoring for pipe thinning in a flow-accelerated corrosion proof test facility

  • Cheong, Yong-Moo;Kim, Kyung-Mo;Kim, Dong-Jin
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1463-1471
    • /
    • 2017
  • In order to monitor the pipe thinning caused by flow-accelerated corrosion (FAC) that occurs in coolant piping systems, a shear horizontal ultrasonic pitch-catch waveguide technique was developed for accurate pipe wall thickness monitoring. A clamping device for dry coupling contact between the end of the waveguide and pipe surface was designed and fabricated. A computer program for multi-channel on-line monitoring of the pipe thickness at high temperature was also developed. Both a four-channel buffer rod pulse-echo type and a shear horizontal ultrasonic waveguide type for high-temperature thickness monitoring system were successfully installed to the test section of the FAC proof test facility. The overall measurement error can be estimated as ${\pm}10{\mu}m$ during a cycle from room temperature to $200^{\circ}C$.

Evaluation of the Effect of Riser Support System on Global Spar Motion by Time-domain Nonlinear Hull/Mooring/Riser Coupled Analysis

  • KOO BON-JUN;KIM MOO-HYUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.5 s.66
    • /
    • pp.16-25
    • /
    • 2005
  • The effect of vertical riser support system on the dynamic behaviour of a classical spar platform is investigated. Spar platform generally uses buoyancy-can riser support system, but as water depth gets deeper the alternative riser support system is required due to safety and cost issues. The alternative riser support system is to hang risers off the spar platform using pneumatic cylinders rather than the buoyancy-can. The existing numerical model for hull/mooring/riser coupled dynamics analysis treats riser as an elastic rod truncated at the keel (truncated riser model), thus, in this model, the effect of riser support system can not be modeled correctly. Due to this reason, the truncated riser model tends to overestimate the spar pitch and heave motion. To evaluate more realistic global spar motion, mechanical coupling among risers, guide frames and support cylinders inside of spar moon-pool should be modeled. In the newly developed model, the risers are extended through the moon-pool by using nonlinear finite element methods with realistic boundary condition at multiple guide frames. In the simulation, the vertical tension from pneumatic cylinders is modeled by using ideal-gas equation and the vertical tension from buoyancy-cans is modeled as constant top tension. The different dynamic characteristics between buoyancy-can riser support system and pneumatic riser support system are extensively studied. The alternative riser support system tends to increase spar heave motion and needs damper system to reduce the spar heave motion.