• Title/Summary/Keyword: Multi-physics

Search Result 666, Processing Time 0.034 seconds

Modeling Technique for a Positive and Negative Variable Displacement Swash Plate Hydraulic Piston Pump in a Multibody Dynamics and Multi-Physics Co-Simulation Environment (다물체 동역학과 다중물리 연동 시뮬레이션 환경에서 정/역 가변용량형 사판식 피스톤 펌프의 모델링 기법)

  • Jang, Jin Hyun;Jeong, Heon Sul
    • Journal of Drive and Control
    • /
    • v.16 no.1
    • /
    • pp.36-44
    • /
    • 2019
  • Variable displacement swash plate piston pump analysis requires electric, hydraulics and dynamics which are similar to the one's incorporated in the complex fluid power and mechanical systems. The main variable capacity for the swash plate piston pumps, hydraulics or simple kinematic (swash plate degree, piston displacement) models are analyzed using AMESim, a multi-physics analysis program. AMESim is a multi-physics hydraulic analysis program that is considered good for the environment but not appropriate for environmental analysis for multibody dynamics. In this study, the analytical model of the swash plate type hydraulic piston pump variable capacity is modeled by combining the hydraulic part and the dynamic part through co-simulation of multibody dynamics program (Virtual.lab Motion) and multi-physics analysis (AMESim). This paper describes the whole modeling analysis method on the mechanical analysis of the multi-body dynamics program and how the hydraulic analysis in multi-physics analysis program works. This paper also presents a methodology for analyzing complex fluid power systems.

Multi Physics research of Energy material using Ghost Fluid concept (Ghost Fluid concept기반의 에너지 물질의 Multi Physics 연구)

  • Kim, Ki-Hong;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.299-302
    • /
    • 2006
  • We present an innovative means of numerically treating interfaces associated with chemically active energetic materials. Recent advances in wave tracking technique based on the Ghost Fluid Concept is extended to handle multi-material multi-phase interfaces associated with chemical environment associated with explosion. We show several work-in-progress applications of our code, including the impact problems involving both energetic and inert elements. Accurate modeling of the equation of state and the constitutive relations are also discussed

  • PDF

Linear Bipolar OTAs Employing Multi-tanh Doublet and Exponential-law Circuits

  • Matsumoto, Fujihiko;Yamaguchi, Isamu;Noguchi, Yasuaki
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.579-582
    • /
    • 2000
  • In this paper, new linearization technique for bipolar OTAs using exponential-law circuits is described. The core circuit of the proposed OTAs is the multi-TANH doublet. The OTAs have adaptively biasing current sources, which consists of the exponential-law circuits. Three types of the OTAs are presented. The linear input voltage ranges of the OTAs are almost the same as the multi-TANH triplet. Further, the OTAs have lower power dissipation than the multi-TANH triplet.

  • PDF

ADVANCES IN MULTI-PHYSICS AND HIGH PERFORMANCE COMPUTING IN SUPPORT OF NUCLEAR REACTOR POWER SYSTEMS MODELING AND SIMULATION

  • Turinsky, Paul J.
    • Nuclear Engineering and Technology
    • /
    • v.44 no.2
    • /
    • pp.103-122
    • /
    • 2012
  • Significant advances in computational performance have occurred over the past two decades, achieved not only by the introduction of more powerful processors but the incorporation of parallelism in computer hardware at all levels. Simultaneous with these hardware and associated system software advances have been advances in modeling physical phenomena and the numerical algorithms to allow their usage in simulation. This paper presents a review of the advances in computer performance, discusses the modeling and simulation capabilities required to address the multi-physics and multi-scale phenomena applicable to a nuclear reactor core simulator, and present examples of relevant physics simulation codes' performances on high performance computers.

The Effect of MOCVD Growth Parameters on the Photolumenescence Intensity of InN/GaN Multi-layers (MOCVD 성장조건이 InN/GaN 다층박막의 발광세기에 미치는 영향)

  • Kim, Hyeon-Su;Lee, Jeong-Ju;Jeong, Sun-Yeong;Lee, Jeong-Yong;Lin, J.Y.;Jiang, H.X.
    • Korean Journal of Materials Research
    • /
    • v.12 no.3
    • /
    • pp.190-194
    • /
    • 2002
  • InN/GaN multi-layers were grown by metalorganic chemical vapor deposition(MOCVD) in order to get the appropriate structure for an high power blue-green light emitting diode(LED), and effects of growth conditions (growth temperature, pressure, and $trimethylindium(TMIn)-NH_3-N_2\; flow\; rare)$ on the integrated photoluminescence (PL) intensity and PL peak energy in InN/GaN multi-layers were investigated. The optimized growth conditions with the highest integrated PL intensity for InN/GaN multi-layers were obtained: the growth temperature at $780^{\circ}C$, the growth pressure at 325 Torr, the TMIn flow rate with 150 $m\ell$/min, the $NH_3$flow rate with 3.2 ι/min, and $N_2$ flow rate with 2 ι/min.

Multi-physics Analysis for Temperature Rise Prediction of Power Transformer

  • Ahn, Hyun-Mo;Kim, Joong-Kyoung;Oh, Yeon-Ho;Song, Ki-Dong;Hahn, Sung-Chin
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.114-120
    • /
    • 2014
  • In this paper, a method for multi-physics analysis of the temperature-dependent properties of an oil-immersed transformer is discussed. To couple thermal fields with electromagnetic and fluid fields, an algorithm employing a user defined function (UDF) is proposed. Using electromagnetic analysis, electric power loss dependent on temperature rise is calculated; these are used as input data for multi-physics analysis in order to predict the temperature rise. A heat transfer coefficient is applied only at the outermost boundary between transformer and the atmosphere in order to reduce the analysis region. To verify the validity of the proposed method, the predicted temperature rises in high-voltage (HV) and low-voltage (LV) windings and radiators were compared with the experimental values.

Dynamic analysis of multi-functional maintenance platform based on Newton-Euler method and improved virtual work principle

  • Li, Dongyi;Lu, Kun;Cheng, Yong;Zhao, Wenlong;Yang, Songzhu;Zhang, Yu;Li, Junwei;Shi, Shanshuang
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2630-2637
    • /
    • 2020
  • The structure design of divertor Multi-Functional Maintenance Platform (MFMP) actuated by hydraulic system for China Fusion Engineering Test Reactor (CFETR) was introduced in this paper. The model of MFMP was established according to maintenance requirements. In this paper, Newton-Euler method and the improved virtual work principle were used, the equivalent driving force of each actuator was obtained through the equivalent Jacobian inverse matrix derived from velocity relationship among the components. The accuracy of the model was verified by ADAMS simulation. The stability control of the heavy-duty components driven by hydraulic cylinders based on Newton-Euler method and improved virtual work principle was established.

How to Prepare the Manuscript for Submission to the Proceedings of KSPE Conference (고에너지 물질 연소를 기반으로 한 Multi Physics Modeling)

  • Kim, Ki-Hong;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.238-241
    • /
    • 2007
  • We present an innovative method of multi-physics application involving energetic materials. Energetic materials are related to reacting flows in extreme environments such as fires and explosions. They typically involve high pressure, hish temperature, strong non-linear shock waves, and high strain rate deformation of metals. We use an Eulerian methodology to address these problems. Our approach is naturally free from large deformation of materials that makes it suitable for high strain-rate multi-material interaction problems. Furthermore we eliminate the possible interface smearing by using the level sets. We have devised a new level set based tracking framework that can elegantly handle large gradients typically found in reacting gases and metals. We show several work-in-progress applications of our algorithm including the Taylor impact test, explosive venting and additional confined explosion problems of modem interest.

  • PDF

DEVELOPMENT OF A HYBRID CFD FRAMEDWORK FOR MULTI-PHENOMENA FLOW ANALYSIS AND DESIGN (다중현상 유동 해석 및 설계를 위한 융복합 프레임웍 개발)

  • Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.517-523
    • /
    • 2010
  • Recently, the rapid evolution of computational fluid dynamics (CFD) has enabled its key role in industries and predictive sciences. From diverse research disciplines, however, are there strong needs for integrated analytical tools for multi-phenomena beyond simple flow simulation. Based on the concurrent simulation of multi-dynamics, multi-phenomena beyond simple flow simulation. Based on the concurrent simulation of multi-dynamics, multi-physics and multi-scale phenomena, the multi-phenomena CFD technology enables us to perform the flow simulation for integrated and complex systems. From the multi-phenomena CFD analysis, the high-precision analytical and predictive capacity can enhance the fast development of industrial technologies. It is also expected to further enhance the applicability of the simulation technique to medical and bio technology, new and renewable energy, nanotechnology, and scientific computing, among others.

  • PDF