• 제목/요약/키워드: Multi-slit prompt-gamma camera

검색결과 7건 처리시간 0.026초

New algorithm to estimate proton beam range for multi-slit prompt-gamma camera

  • Ku, Youngmo;Jung, Jaerin;Kim, Chan Hyeong
    • Nuclear Engineering and Technology
    • /
    • 제54권9호
    • /
    • pp.3422-3428
    • /
    • 2022
  • The prompt gamma imaging (PGI) technique is considered as one of the most promising approaches to estimate the range of proton beam in the patient and unlock the full potential of proton therapy. In the PGI technique, a dedicated algorithm is required to estimate the range of the proton beam from the prompt gamma (PG) distribution acquired by a PGI system. In the present study, a new range estimation algorithm was developed for a multi-slit prompt-gamma camera, one of PGI systems, to estimate the range of proton beam with high accuracy. The performance of the developed algorithm was evaluated by Monte Carlo simulations for various beam/phantom combinations. Our results generally show that the developed algorithm is very robust, showing very high accuracy and precision for all the cases considered in the present study. The range estimation accuracy of the developed algorithm was 0.5-1.7 mm, which is approximately 1% of beam range, for 1×109 protons. Even for the typical number of protons for a spot (1×108), the range estimation accuracy of the developed algorithm was 2.1-4.6 mm and smaller than the range uncertainties and typical safety margin, while that of the existing algorithm was 2.5-9.6 mm.

Multi-slit prompt-gamma camera for locating of distal dose falloff in proton therapy

  • Park, Jong Hoon;Kim, Sung Hun;Ku, Youngmo;Kim, Chan Hyeong;Lee, Han Rim;Jeong, Jong Hwi;Lee, Se Byeong;Shin, Dong Ho
    • Nuclear Engineering and Technology
    • /
    • 제51권5호
    • /
    • pp.1406-1416
    • /
    • 2019
  • In this research, a multi-slit prompt-gamma camera was developed to locate the distal dose falloff of the proton beam spots in spot scanning proton therapy. To see the performance of the developed camera, therapeutic proton beams were delivered to a solid plate phantom and then the prompt gammas from the phantom were measured using the camera. Our results show that the camera locates the 90% distal dose falloff (= d90%), within about 2-3 mm of error for the spots which are composed $3.8{\times}10^8$ protons or more. The measured location of d90% is not very sensitive to the irradiation depth of the proton beam (i.e., the depth of proton beam from the phantom surface toward which the camera is located). Considering the number of protons per spot for the most distal spots in typical treatment cases (i.e., 2 Gy dose divided in 2 fields), the camera can locate d90% only for a fraction of the spots depending on the treatment cases. However, the information of those spots is still valuable in that, in the multi-slit prompt-gamma camera, the distal dose falloff of the spots is located solely based on prompt gamma measurement, i.e., not referring to Monte Carlo simulation.

Comparison of knife-edge and multi-slit camera for proton beam range verification by Monte Carlo simulation

  • Park, Jong Hoon;Kim, Sung Hun;Ku, Youngmo;Lee, Hyun Su;Kim, Chan Hyeong;Shin, Dong Ho;Jeong, Jong Hwi
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.533-538
    • /
    • 2019
  • The mechanical-collimation imaging is the most mature technology in prompt gamma (PG) imaging which is considered the most promising technology for beam range verification in proton therapy. The purpose of the present study is to compare the performances of two mechanical-collimation PG cameras, knife-edge (KE) camera and multi-slit (MS) camera. For this, the PG cameras were modeled by Geant4 Monte Carlo code, and the performances of the cameras were compared for imaginary point and line sources and for proton beams incident on a cylindrical PMMA phantom. From the simulation results, the KE camera was found to show higher counting efficiency than the MS camera, being able to estimate the beam range even for $10^7$ protons. Our results, however, confirmed that in order to estimate the beam range correctly, the KE camera should be aligned, at least approximately, to the location of the proton beam range. The MS camera was found to show lower efficiency, being able to estimate the beam range correctly only when the number of the protons is at least $10^8$. For enough number of protons, however, the MS camera estimated the beam range correctly, errors being less than 1.2 mm, regardless of the location of the camera.

Tackling range uncertainty in proton therapy: Development and evaluation of a new multi-slit prompt-gamma camera (MSPGC) system

  • Youngmo Ku;Sehoon Choi;Jaeho Cho;Sehyun Jang;Jong Hwi Jeong;Sung Hun Kim;Sungkoo Cho;Chan Hyeong Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3140-3149
    • /
    • 2023
  • In theory, the sharp dose falloff at the distal end of a proton beam allows for high conformal dose to the target. However, conformity has not been fully achieved in practice, primarily due to beam range uncertainty, which is approximately 4% and varies slightly across institutions. To address this issue, we developed a new range verification system prototype: a multi-slit prompt-gamma camera (MSPGC). This system features high prompt-gamma detection sensitivity, an advanced range estimation algorithm, and a precise camera positioning system. We evaluated the range measurement precision of the prototype for single spot beams with varying energies, proton quantities, and positions, as well as for spot-scanning proton beams in a simulated SSPT treatment using a phantom. Our results demonstrated high accuracy (<0.4 mm) in range measurement for the tested beam energies and positions. Measurement precision increased significantly with the number of protons, achieving 1% precision with 5 × 108 protons. For spot-scanning proton beams, the prototype ensured more than 5 × 108 protons per spot with a 7 mm or larger spot aggregation, achieving 1% range measurement precision. Based on these findings, we anticipate that the clinical application of the new prototype will reduce range uncertainty (currently approximately 4%) to 1% or less.

다중 슬릿 즉발감마선 카메라를 위한 이중모드 신호처리 모듈 개발 (Development of Dual-mode Signal Processing Module for Multi-slit Prompt-gamma Camera)

  • 박종훈;이한림;김성훈;김찬형;신동호;이세병;정종휘
    • 한국의학물리학회지:의학물리
    • /
    • 제27권1호
    • /
    • pp.37-45
    • /
    • 2016
  • 양성자 치료 시 양성자 빔의 특성을 이용하여 치료 부위에 국부적인 선량을 부여하고 정상조직에 불필요한 선량을 줄이기 위해서는 인체 내 양성자 빔의 비정을 실시간으로 확인하는 것이 중요하다. 이를 위해 본 연구팀은 24개의 섬광검출기 배열 및 24채널의 신호 처리 시스템으로 구성된 즉발감마선 카메라 모듈을 개발하고 있다. 본 연구에서는 다채널의 섬광 검출기 신호를 처리하기 위하여 이중모드 다채널 신호 처리 모듈을 개발하여 그 성능을 평가해보았다. 성능을 평가한 결과 에너지 교정 모드를 통해 다채널의 섬광검출기에 대하여 동시에 에너지 교정이 가능함을 확인하였고, 이를 통하여 정확하게 3 MeV에 해당하는 측정 하한 값을 결정할 수 있었다. 고속 데이터 획득 모드를 통해 45 MeV 양성자 빔에서 발생한 즉발감마선 분포를 측정한 결과 $3{\times}10^9$개의 양성자 빔에서도 양성자 선량 분포와 유사한 결과를 얻을 수 있었고, 빔 비정을 평가한 결과 $17.13{\pm}0.76mm$로 EBT film을 통하여 측정한 비정인 16.15 mm와 굉장히 밀접한 관련이 있음을 확인하였다.

Correction of Prompt Gamma Distribution for Improving Accuracy of Beam Range Determination in Inhomogeneous Phantom

  • Park, Jong Hoon;Kim, Sung Hun;Ku, Youngmo;Lee, Hyun Su;Kim, Young-su;Kim, Chan Hyeong;Shin, Dong Ho;Lee, Se Byeong;Jeong, Jong Hwi
    • 한국의학물리학회지:의학물리
    • /
    • 제28권4호
    • /
    • pp.207-217
    • /
    • 2017
  • For effective patient treatment in proton therapy, it is therefore important to accurately measure the beam range. For measuring beam range, various researchers determine the beam range by measuring the prompt gammas generated during nuclear reactions of protons with materials. However, the accuracy of the beam range determination can be lowered in heterogeneous phantoms, because of the differences with respect to the prompt gamma production depending on the properties of the material. In this research, to improve the beam range determination in a heterogeneous phantom, we derived a formula to correct the prompt-gamma distribution using the ratio of the prompt gamma production, stopping power, and density obtained for each material. Then, the prompt-gamma distributions were acquired by a multi-slit prompt-gamma camera on various kinds of heterogeneous phantoms using a Geant4 Monte Carlo simulation, and the deduced formula was applied to the prompt-gamma distributions. For the case involving the phantom having bone-equivalent material in the soft tissue-equivalent material, it was confirmed that compared to the actual range, the determined ranges were relatively accurate both before and after correction. In the case of a phantom having the lung-equivalent material in the soft tissue-equivalent material, although the maximum error before correction was 18.7 mm, the difference was very large. However, when the correction method was applied, the accuracy was significantly improved by a maximum error of 4.1 mm. Moreover, for a phantom that was constructed based on CT data, after applying the calibration method, the beam range could be generally determined within an error of 2.5 mm. Simulation results confirmed the potential to determine the beam range with high accuracy in heterogeneous phantoms by applying the proposed correction method. In future, these methods will be verified by performing experiments using a therapeutic proton beam.

Improvement of Statistics in Proton Beam Range Measurement by Merging Prompt Gamma Distributions: A Preliminary Study

  • Kim, Sung Hun;Park, Jong Hoon;Ku, Youngmo;Lee, Hyun Su;Kim, Young-su;Kim, Chan Hyeong;Jeong, Jong Hwi
    • Journal of Radiation Protection and Research
    • /
    • 제44권1호
    • /
    • pp.1-7
    • /
    • 2019
  • Background: To monitor proton beam in proton therapy, prompt gamma imaging systems are being developed by several research groups, and these systems are expected to improve the quality of the treatment and the patient safety. To apply the prompt gamma imaging systems into spot scanning proton therapy, the systems should be able to monitor the proton beam range of a spot with a small number of protons ( <$10^8$ protons), which is quite often not the case due to insufficient prompt gamma statistics. Materials and Methods: In the present study, we propose to improve prompt gamma statistics by merging the prompt gamma distributions of several individual spots into a new distribution. This proposal was tested by Geant4 Monte Carlo simulations for a multi-slit prompt gamma camera which has been developed to measure the proton beam range in the patient. Results and Discussion: The results show that the proposed method clearly enhance the statistical precision of beam range measurement. The accuracy of beam range verification is improved, within ~1.4 mm error, which is not achievable before applying the developed method. Conclusion: In this study, we tried to improve the statistics of the prompt gamma statistics by merging the prompt gamma distributions of multiple spots, and it was found that the merged distribution provided sufficient prompt gamma statistics and the proton beam range was determined accurately.