• Title/Summary/Keyword: Multi-variable optimal design

Search Result 58, Processing Time 0.03 seconds

Multiphase material topology optimization of Mindlin-Reissner plate with nonlinear variable thickness and Winkler foundation

  • Banh, Thanh T.;Nguyen, Xuan Q.;Herrmann, Michael;Filippou, Filip C.;Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • v.35 no.1
    • /
    • pp.129-145
    • /
    • 2020
  • In typical, structural topology optimization plays a significant role to both increase stiffness and save mass of structures in the resulting design. This study contributes to a new numerical approach of topologically optimal design of Mindlin-Reissner plates considering Winkler foundation and mathematical formulations of multi-directional variable thickness of the plate by using multi-materials. While achieving optimal multi-material topologies of the plate with multi-directional variable thickness, the weight information of structures in terms of effective utilization of the material at the appropriate thickness location may be provided for engineers and designers of structures. Besides, numerical techniques of the well-established mixed interpolation of tensorial components 4 element (MITC4) is utilized to overcome a well-known shear locking problem occurring to thin plate models. The well-founded mathematical formulation of topology optimization problem with variable thickness Mindlin-Reissner plate structures by using multiple materials is derived in detail as one of main achievements of this article. Numerical examples verify that variable thickness Mindlin-Reissner plates on Winkler foundation have a significant effect on topologically optimal multi-material design results.

Optimal Blank Design for Sheet Metal Stamping (박판성형공정의 블랭크 최적설계)

  • 김용환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.141-145
    • /
    • 2000
  • A systematic method to find the optimal blank shape for sheet forming is proposed by coupling the numerical simulation technique. A weighted parameter was introduced in order to simplify the multi-variable optimization problem to a single-variable problem. The proposed method has been applied to the blank design of drawing processes to obtain the near-net shape within the required error bound after forming, Excellent results have been obtained between the numerical results and the target contour shapes. Through the investigation the proposed systematic method for optimal blank design is found to be effective in the practical forming processes

  • PDF

Optimal Design for Flexible Passive Biped Walker Based on Chaotic Particle Swarm Optimization

  • Wu, Yao;Yao, Daojin;Xiao, Xiaohui
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2493-2503
    • /
    • 2018
  • Passive dynamic walking exhibits humanoid and energy efficient gaits. However, optimal design of passive walker at multi-variable level is not well studied yet. This paper presents a Chaotic Particle Swarm Optimization (CPSO) algorithm and applies it to the optimal design of flexible passive walker. Hip torsional stiffness and damping were incorporated into flexible biped walker, to imitate passive elastic mechanisms utilized in human locomotion. Hybrid dynamics were developed to model passive walking, and period-one gait was gained. The parameters global searching scopes were gained after investigating the influences of structural parameters on passive gait. CPSO were utilized to optimize the flexible passive walker. To improve the performance of PSO, multi-scroll Jerk chaotic system was used to generate pseudorandom sequences, and chaotic disturbance would be triggered if the swarm is trapped into local optimum. The effectiveness of CPSO is verified by comparisons with standard PSO and two typical chaotic PSO methods. Numerical simulations show that better fitness value of optimal design could be gained by CPSO presented. The proposed CPSO would be useful to design biped robot prototype.

Multiobjective Decision-Making applied to Ship Optimal Design

  • Wang, Li-Zheng;Xi, Rong-Fei;Bao, Cong-Xi
    • Journal of Ship and Ocean Technology
    • /
    • v.5 no.1
    • /
    • pp.30-37
    • /
    • 2001
  • Ship optimal design is a multi-objective decision-making process and its optimal solution does not exit in general. It is a problem in which the decision-maker is very interested that an effective solution is how to be found which has good characteristic and is substituted for optimal solution in a sense. In the previous methods of multi-objective decision-making, the weighting coefficients are decided from the point of view of individuals which have a bit sub-jective an unilateral behavior. in order to fairly and objectively decide the weighting coeffi-cients, which are considered to be optimal in all system of multi-objective decision-making and satisfactory solution to the decision-maker, the pater presents a method of applying the Technology of the Biggest Entropy. It is proved that the method described in the paper is very feasible and effective be means of a practical example of ship optimal design.

  • PDF

A robust multi-objective localized outrigger layout assessment model under variable connecting control node and space deposition

  • Lee, Dongkyu;Lee, Jaehong;Kang, Joowon
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.767-776
    • /
    • 2019
  • In this article, a simple and robust multi-objective assessment method to control design angles and node positions connected among steel outrigger truss members is proposed to approve both structural safety and economical cost. For given outrigger member layouts, the present method utilizes general-purpose prototypes of outrigger members, having resistance to withstand lateral load effects directly applied to tall buildings, which conform to variable connecting node and design space deposition. Outrigger layouts are set into several initial design conditions of height to width of an arbitrary given design space, i.e., variable design space. And then they are assessed in terms of a proposed multi-objective function optimizing both minimal total displacement and material quantity subjected to design impact factor indicating the importance of objectives. To evaluate the proposed multi-objective function, an analysis model uses a modified Maxwell-Mohr method, and an optimization model is defined by a ground structure assuming arbitrary discrete straight members. It provides a new robust assessment model from a local design point of view, as it may produce specific optimal prototypes of outrigger layouts corresponding to arbitrary height and width ratio of design space. Numerical examples verify the validity and robustness of the present assessment method for controlling prototypes of outrigger truss members considering a multi-objective optimization achieving structural safety and material cost.

An Interactive Approach to Multiple Response Optimization (다중반응최적화를 위한 상호교호적 접근법)

  • Lee, Pyoungsoo;Park, K. Sam
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.40 no.3
    • /
    • pp.49-61
    • /
    • 2015
  • We study the problem of multiple response optimization (MRO) and focus on the selection of input levels which will produce desirable output quality. We propose an interactive multiple objective optimization approach to the input design. The earlier interactive methods utilized for MRO communicate with the decision maker only using the response variable values, in order to improve the current response values, thereby resulting in the corresponding design solution automatically. In their interaction steps of preference articulation, no account is taken of any active changes in design variable values. On the contrary, our approach permits the decision maker to change the design variable values in its interaction stage, which makes possible the consideration of the preference or economics of the design variable side. Using some typical value functions, we also demonstrate that our method converges reasonably well to the known optimal solutions.

Optimal Design of an In-Wheel Permanent Magnet Synchronous Motor Using a Design of Experiment and Kriging Model (크리깅 기법을 이용한 휠인 영구자석 동기전동기의 최적 설계)

  • Jang, Eun-Young;Hwang, Kyu-Yun;Rhyu, Se-Hyun;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.852-853
    • /
    • 2008
  • This paper proposes an optimal design method for the shape optimization of the permanent magnets (PM) of an in-wheel permanent magnet synchronous motor (PMSM) to reduce the cogging torque considering a total harmonic distortion (THD) and a root mean square (RMS) value of back-EMF. In this method, the Kriging model based on a design of experiment (DOE) is applied to interpolate the objective function in the spaces of design parameters. The optimal design method for the PM of an in-wheel PMSM has to consider multi-variable and multi-objective functions. The developed design method is applied to the optimization for the PM of an in-wheel PMSM.

  • PDF

Optimal placement of viscoelastic dampers and supporting members under variable critical excitations

  • Fujita, Kohei;Moustafa, Abbas;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.1 no.1
    • /
    • pp.43-67
    • /
    • 2010
  • A gradient-based evolutionary optimization methodology is presented for finding the optimal design of both the added dampers and their supporting members to minimize an objective function of a linear multi-storey structure subjected to the critical ground acceleration. The objective function is taken as the sum of the stochastic interstorey drifts. A frequency-dependent viscoelastic damper and the supporting member are treated as a vibration control device. Due to the added stiffness by the supplemental viscoelastic damper, the variable critical excitation needs to be updated simultaneously within the evolutionary phase of the optimal damper placement. Two different models of the entire damper unit are investigated. The first model is a detailed model referred to as "the 3N model" where the relative displacement in each component (i.e., the spring and the dashpot) of the damper unit is defined. The second model is a simpler model referred to as "the N model" where the entire damper unit is converted into an equivalent frequency-dependent Kelvin-Voigt model. Numerical analyses for 3 and 10-storey building models are conducted to investigate the characters of the optimal design using these models and to examine the validity of the proposed technique.

Optimal Neural Network Controller Design using Jacobian (자코비안을 이용한 최적의 신경망 제어기 설계)

  • 임윤규;정병묵;조지승
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.85-93
    • /
    • 2003
  • Generally, it is very difficult to get a modeling equation because multi-variable system has coupling relations between its inputs and outputs. To design an optimal controller without the modeling equation, this paper proposes a neural-network (NN) controller being learned by Jacobian matrix. Another major characteristic is that the controller consists of two separated NN controllers, namely, proportional control part and derivative control part. Simulation results for a catamaran system show that the proposed NN controller is superior to LQR in the regulation and tracking problems.