• 제목/요약/키워드: Multicomponent Alloy

검색결과 13건 처리시간 0.025초

체적수축유동이 있는 일차원 다원합금 응고에 대한 확장된 해석해 (An Extended Similarity Solution for One-Dimensional Multicomponent Alloy Solidification in the Presence of Shrinkage-Induced Flow)

  • 정재동;유호선;최만수;이준식
    • 대한기계학회논문집B
    • /
    • 제24권3호
    • /
    • pp.426-434
    • /
    • 2000
  • This paper deals with a generalized similarity solution for the one-dimensional solidification of ternary or higher-order multicomponent alloys. The present approach not only retains the existing features of binary systems such as temperature- solute coupling, shrinkage-induced flow, solid-liquid property differences, and finite back diffusion, but also is capable of handling a multicomponent alloy without restrictions on the partition coefficient and microsegregation parameter. For an alloy of N-solute species, governing equations in the mushy region reduce to (N+2) nonlinear ordinary differential equations via similarity transformation, which are to be solved along with the closed-form solutions for the solid and liquid regions. A linearized correction scheme adopted in the solution procedure facilitates to determine the solidus and liquidus positions stably. The result for a sample ternary alloy agrees excellently with the numerical prediction as well as the reported similarity solution. Additional calculations are also presented to show the utility of this study. Finally, it is concluded that the present analysis includes the previous analytical approaches as subsets.

Microstructural Features of Multicomponent FeCoCrNiSix Alloys

  • Kong, Kyeong Ho;Kim, Kang Cheol;Kim, Won Tae;Kim, Do Hyang
    • Applied Microscopy
    • /
    • 제45권1호
    • /
    • pp.32-36
    • /
    • 2015
  • The microstructural features of FeCoCrNi, FeCoCrNiAl and FeCoCrNiSix (x=0, 5, 10, 15, 20) alloys have been investigated in the present study. The microstructure of FeCoCrNi alloy changes dramatically with equiatomic addition of Al. The fcc irregular shaped grain structure in the as-cast FeCoCrNi alloy changes into the bcc interconnected structure with phase separation of Al-Ni rich and Cr-Fe rich phases in the as-cast FeCoCrNiAl alloy. The microstructure of FeCoCrNi alloy changes with the addition of Si. With increasing the amount of Si, the fcc structure of the grains is maintained, but new phase containing higher amount of Si forms at the grain boundary. As the amount of Si increases, the fraction the Si-rich grain boundary phase increases.

표면분석용 인증표준물질의 개발 I : 표면조성분석용 합금박막 표준물질 (Development of certified reference material (CRM)s for surface analysis I : alloy thin film for surface compositional analysis)

  • 김경중;박용섭;문대원
    • 한국진공학회지
    • /
    • 제8권3B호
    • /
    • pp.276-282
    • /
    • 1999
  • For the quantitative surface analysis of multicomponent materials, algorithms for the compensation of the matrix effect and surface compositional change by ion beam sputtering must be established and reference materials having certified compositions are necessary. These certified reference material (CRM)s are needed for the improvement of instrument performance, inter-laboratory comparison and quantitative surface analysis. Surface analysis group of KRISS developed alloy thin film CRMs by and ion beam sputter deposition system and in-situ surface analysis system to control the composition of alloy thin films The real compositions of the CRMs were certified by inductively coupled plasma-atomic emission spectroscopy (ICP-AES).

  • PDF

동적재료모델에 의한 벌크 비정질 금속의 판재성형성에 대한 고찰 (Dynamic Materials Model-Based Study on the Formability of Bulk Metallic Glass Sheets)

  • 방원규;이광석;안상호;장영원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.173-176
    • /
    • 2002
  • Viscoplastic deformation and sheet forming behavior of multicomponent Zr-based bulk metallic glass alloy has been investigated. From a series of mechanical test results, basic processing maps based on Dynamic Materials Model have been constructed to establish feasible forming conditions. Stamping in laboratory scale was then performed at the various stroke speeds and temperatures using a hydraulic press. Failure in macroscopic level was examined to check the validity of constructed processing maps.

  • PDF

벌크 비정질 Zr-Ti-Cu-Ni-Be 합금의 고온 소성 변형 특성 (High Temperature Plastic Deformation Behaviors of the Bulk Metallic Glass Zr-Ti-Cu-Ni-Be Alloy)

  • 이광석;하태권;안상호;장영원
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.272-276
    • /
    • 2001
  • Multicomponent $Zr_{41.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}$ bulk matallic glass alloy shows good bulk glass forming ability due to its high resistance to crystallization in the undercooled liquid state.1) In this study, DSC and X-ray diffractometry have been performed to confirm the amorphous structure of the master $Zr_{41.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}$ alloy. To investigate the mechanical properties and deformation behaviors of the bulk metallic $Zr_{41.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}$ alloy, a series of compression tests has been carried out at the temperatures ranging from $351^{\circ}C$ to $461^{\circ}C$ and at the various initial strain rates from $2{\times}10^{-4}s^{-1}\;to\;2{\times}10^{-2}s^{-1}$. There are two types of nominal stress-strain curves. The one shows linear stress-strain relationship meaning fracture at maximum stress, the other shows plastic deformation including steady-state flow. Also DSC analysis for the compressed specimens has been performed to investigate the change of thermal stability and crystallization behavior for the various test conditions.

  • PDF

벌크 비정질 Zr-Ti-Cu-Ni-Be 합금의 고온 압축 변형 특성 (High Temperature Compressive Deformation Behavior of the Bulk Metallic Glass Zr-Ti-Cu-Ni-Be Alloy)

  • 이광석;하태권;안상호;장영원
    • 소성∙가공
    • /
    • 제10권7호
    • /
    • pp.565-572
    • /
    • 2001
  • It is well known that a multicomponent $Zr_{4l.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}$ bulk metallic glass alloy shows good bulk glass forming ability due to its high resistance to crystallization in the undercooled liquid state. DSC and XRD have been performed to confirm the amorphous structure of the master alloy. To investigate the mechanical properties and deformation behavior of the bulk metallic $Zr_{4l.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}$ alloy, a series of compression tests has been carried out at the temperatures ranging from $351^{\circ}C$ to $461^{\circ}C$at the various initial strain rates from $2{\times}10^4s^1$ to $2{\times}10^2s^1$. Three types of nominal stress-strain curves have been identified such as linear stress-strain relationship meaning fracture at maximum stress, plastic deformation including stress overshoot and steady-state flow, plastic deformation without stress overshoot depending on the strain rate and test temperature. Also DSC analysis for the compressed specimens was carried out to investigate the change of structure, thermal stability and crystallization behavior for the various test conditions.

  • PDF

Hydrogen Absorption by Laves Phase Related BCC Solid Solution Alloys

  • Akiba, Etsuo
    • 한국수소및신에너지학회논문집
    • /
    • 제8권3호
    • /
    • pp.101-109
    • /
    • 1997
  • We propose a new concept of hydrogen absorbing alloy, "Laves phase related BCC solid solution". It was firstly found among the phases tormed in multicomponent nominal $AB_2$ alloys which consisted of Zr and Ti for the A metal site and 5A, 6A and 7A transition metals for the B metal sites. In these alloys a BCC solid solution often coexisted with a Laves phase. It showed stability of hydrides and reaction kinetics almost identical to intermetallics such as Laves phase alloys. We prepared an almost pure "Laves phase related BCC solid solution" and found that it had a large hydrogen capacity (more than 2 mass%) and fast hydrogen absorption and desorption kinetics at ambient temperature and pressure. This new hydrogen absorbing alloy may open a new era of hydrogen related application such as hydrogen vehicles.

  • PDF

Correlation between rare earth elements in the chemical interactions of HT9 cladding

  • Lee, Eun Byul;Lee, Byoung Oon;Shim, Woo-Yong;Kim, Jun Hwan
    • Nuclear Engineering and Technology
    • /
    • 제50권6호
    • /
    • pp.915-922
    • /
    • 2018
  • Metallic fuel has been considered for sodium-cooled fast reactors because it can maximize the uranium resources. It generates rare earth elements as fission products, where it is reported by aggravating the fuel-cladding chemical interaction at the operating temperature. Rare earth elements form a multicomponent alloy (Ce-Nd-Pr-La-Sm-etc.) during reactor operation, where it shows a higher reaction thickness than a single element. Experiments have been carried out by simplifying multicomponent alloys for mono or binary systems because complex alloys have difficulty in the analysis. In previous experiments, xCe-yNd was fabricated with two elements, Ce and Nd, which have a major effect on the fuel-cladding chemical interaction, and the thickness of the reaction layer reached maximum when the rare earth elements ratio was 1:1. The objective of this study is to evaluate the effect and relationship of rare earth elements on such synergistic behavior. Single and binary rare earth model alloys were prepared by selecting five rare earth elements (Ce, Nd, Pr, La, and Sm). In the single system, Nd and Pr behaviors were close to diffusion, and Ce showed a eutectic reaction. In the binary system, Ce and Sm further increased the reaction layer, and La showed a non-synergy effect.

Zr0.8Ti0.2Mn0.4V0.6Ni1-xFex 합금 전극의 전기화학적 특성 (Electrochemical Properties of Zr0.8Ti0.2Mn0.4V0.6Ni1-xFex Alloy Electrodes)

  • 송명엽;권익현;이동섭
    • 한국수소및신에너지학회논문집
    • /
    • 제13권3호
    • /
    • pp.181-189
    • /
    • 2002
  • A series of multicomponent $Zr_{0.8}Ti_{0.2}Mn_{0.4}V_{0.6}Ni_{1-x}Fe_{x}$ (x=0.00, 0.08, 0.15, 0.22, and 0.30) alloys are prepared and their oystal structure and P-C-T curves are examined. The electrochemical properties of these allqys such as activation conditions, discharge capacity, cycling performance are also investigated. $Zr_{0.8}Ti_{0.2}Mn_{0.4}V_{0.6}Ni_{1-x}Fe_{x}$ (x=0.00, 0.08, 0.15, 0.22 and 0.30) have the C14 Laves phase hexagonal structure. The electrode was activated by the hot-charging treatment. The best activation conditions were the current density 120 mA/g and the hot-charging time 12h at $80^{\circ}C$ in the case of the alloy with x=0.00. The discharge capacity increased rapidly until the fourth cycle and then decreased. The discharge capacity increased again from the 13th cycle, arriving at 234 mAh/g at the 50th cycle. The discharge capacily just after activation decreases with the increase in the amount of the substituted Fe but the cycling performance is improved. The discharge capacity after activation of the alloy with x=0.00 is 157 mAh/g at the current density 120 mA/g. $Zr_{0.8}Ti_{0.2}Mn_{0.4}V_{0.6}Ni_{0.85}Fe_{0.15}$ is a good composition with a medium quantity of discharge capacities and a good cycling performance. The ICP analysis of the electrolyte for these electrodes after 50 charge-discharge cycles shows that the concentrations of V and Zr are relatively high. Another series of multicomponent $Zr_{0.8}Ti_{0.2}Mn_{0.4}V_{0.6}Ni_{0.85}M_{0.15}$ (M = Fe, Co, Cu, Mo and Al) alloys are prepared. They also have the C14 Laves phase hexagonal structure. The alloys with M = Co and Fe have relatively larger hydrogen storage capacities. The discharge capacities just after activation are relatively large in the case of the alloys with M = Al and Cu. They are 212 and 170 mAh/g, respectivety, at the current density 120mA/g. The $Zr_{0.8}Ti_{0.2}Mn_{0.4}V_{0.6}Ni_{0.85}Co_{0.15}$ alloy is the best one with a relatively large discharge capacity and a good cycling performance.