• Title/Summary/Keyword: Multilateration

Search Result 37, Processing Time 0.032 seconds

A Study on the improvement of the Multilateration data by emplying an IMM filter (IMM 필터를 활용한 Multilateration 정확도 향상에 관한 연구)

  • Cho, Tae-Hwan;Song, In-Seong;Jang, Eun-Mee;Yoon, Wan-Oh;Choi, Sang-Bang
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.4
    • /
    • pp.578-585
    • /
    • 2012
  • CNS/ATM(Communication Navigation Surveillance/Air Traffic Management) was adopted as a standard navigation system of 21st century. Therefore, ICAO(International Civil Aviation Organization) members are developing the technology and infrastructure of CNS/ATM. ADS-B(Automatic Dependent Surveillance-Broadcast) system and Multilateration system are being implemented in the surveillance field of CNS/ATM. Multilateration system is installed in order to complement radar system and to surveil blind areas. Also, Multilateration system using TDOA(Time Difference Of Arrival) is more accurate than radar. In this paper, we applied an IMM(Interacting Multiple Model) filter which is widely used in radar systems to the Multilateration data in order to improve the reliability of the Multilateration data. Comparisons with the original Multilateration data and the Multilateration data with the IMM filter show that the ADS-B data with the IMM filter provides a better performance: 38.37% near the airport, 20.86% around 10 miles of the airport.

An Onboard Multilateration system for Efficient Air Traffic Management (효율적인 항공교통관리를 위한 Onboard Multilateration 시스템)

  • Cho, Tae-Hwan;Song, In-Seong;Jang, Eun-Mee;Yoon, Wan-Oh;Choi, Sang-Bang
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • In the next generation of ATM, ADS-B(Automatic Dependent Surveillance-Broadcast) and multilateration are the main technology recommended by ICAO(International Civil Aviation Organization). However, there are a lot of non-equipped ADS-B aircraft today. Therefore, TIS-B(Traffic Information Service-Broadcast) provides traffic information, which has obtained from radars for non-equipped ADS-B aircraft. In this paper, we presented an onboard multilateration system for non-equipped ADS-B aircraft using SSR(Secondary Surveillance Radar) signal instead of TIS-B. TIS-B has a lot of error because of using radar data, but multilateration has less error than radar because of using TDOA(Time Difference of Arrival) method. Results of performance analysis show that the position accuracy is improved by the proposed method using on-board multilateration.

A Novel Hearability Enhancement Method for Forward-Link Multilateration Using OFDM Signal

  • Park, Ji-Won;Lim, Jeong-Min;Lee, Kyu-Jin;Sung, Tae-Kyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.638-648
    • /
    • 2013
  • Together with the GPS-based approach, geo-location through mobile communication networks is a key technology for location-based service. To save the cost, most geo-location system is implemented on the existed network service, which has a cellular structure. Still, multilateration is limited in cellular structure because it is difficult for the mobile terminal to acquire distance measurements from multiple base stations. This low hearability in the receiver is caused by co-channel interference and multipath environment. Therefore, hearability enhancement is necessary for multilateration under multipath and interference environment. Former time domain based hearability methods were designed for real signals. However, orthogonal frequency division multiplexing (OFDM) signal, which its usage has been increased in digital wireless communication, is a complex signal. Thus, different hearability enhancement method is needed for OFDM signals. This paper proposes a hearability enhancement method for forward-link multilateration using OFDM signals, which employ interference cancellation and multipath mitigation. A novel interference cancellation and multipath mitigation strategy for complex-valued OFDM signals is presented that has an iterative structure. Simulation results show that the proposed multilateration method provides the user's position with an accuracy of less than 80m through the mobile WiMAX cellular network in multipath environment.

The Performance Enhancement of Automatic Dependent Surveillance - Broadcast Using Information Fusion Method (정보융합 기법을 활용한 ADS-B 성능 개선)

  • Cho, Taehwan;Kim, Kanghee;Kim, inhyuk;Choi, Sangbang
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.5
    • /
    • pp.345-353
    • /
    • 2015
  • In this paper, we proposed an information fusion method for enhancement of automatic dependent surveillance - broadcast (ADS-B) system which is one of the next generation navigation system. Although ADS-B provides better performance than traditional radar, ADS-B still has error due to dependence of global navigation satellite system (GNSS) information. In this paper, we improved the ADS-B performance using information fusion of multilateration (MLAT) and wide area multilateration (WAM). Information fusion provides accurate data compared to original data. Mostly, information fusion methods use Kalman filter or IMM(interacting multiple model) filter as a subfilter. However, we used Robust IMM filter as a subfilter to improve the aircraft tracking performance. Also, we use actual ADS-B data not virtual data to increase reliability of our information fusion method.

Design of Interrogator for Airspace Surveillance in Multilateration Systems (항공용 다변측정 감시시스템 적용을 위한 질문기 설계)

  • Koh, Young-Mok;Kim, Su-Hong
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.2
    • /
    • pp.108-115
    • /
    • 2015
  • Multilateration systems are used to provide the position of aircraft in flight or on airport runways. In the multilateration systems, the interrogator is an important transmitter that used to interrogate the airplanes with appropriately scenario in surveillance airspace. Whisper-Shout interrogation sequence, which is one of the key functions of the interrogator, can control airport traffic density when intruder airplanes are coming into the surveillance airspace. Therefore collision chance between airplanes could be reduced and also get highly accurate location of incoming airplane in multilateration systems. In this paper, we developed the interrogator that allows it to transmit Mode A/C and Mode S interrogations which is similar to existing secondary surveillance radar. With appropriately controlled Whisper-Shout sequence in the interrogator, the multilateration systems can avoid synchronous garbling and FRUIT phenomenons caused by receiving multiple responses from a number of airplanes.

Alternative Positioning, Navigation and Timing Using Multilateration in a Terminal Control Area (접근관제구역에서 다변측정감시시스템을 이용한 대안항법 방안 연구)

  • Jo, Sanghoon;Kang, Ja-young
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.3
    • /
    • pp.35-41
    • /
    • 2015
  • Multilateration(MLAT) is commonly used in civil and military surveillance applications to accurately locate an aircraft, vehicle or stationary emitter. MLAT calculates the TDOA of signals by transmitted aircraft and determines the aircraft's location. With more than four receivers it is possible to estimate the 3D position of the aircraft by calculating the intersection of the resulting hyperbolas and the system integrity. In this study, our objectives are to apply MLAT technique to Jeju terminal control area and to propose a MLAT receiver network to properly estimate the positions of aircraft approaching this area. Based on computer simulations, we determine locations of ground receivers in Jeju terminal control area, calculate estimated position errors of the aircraft with respect to the selected receiver networks, and find the best receiver network with the least position error.

Comparative Study of Analytical Intersection Methods for Determination of Geodetic Coordinates (대지좌표결정(大地座標決定)을 위한 해석적(解析的) 교회법(交會法)의 비교연구(比較研究))

  • Yeu, Bock Mo;Kang, In Joon;Cho, Gi Sung;Kim, Uk Nam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.51-60
    • /
    • 1986
  • With the improvement of the accuracy of EDM and theodolite, three-dimensional geodetic coordinates can be determinated by means of analytical Intersection & Resection using vector approach. In this paper the accuracy of Resection, Intersection and Multilateration, by which the geodetic coordinates of a unknown point are determinated using the geodetic coordinates, horizontal angles, vertical angles, and slope distances to a known point are analyzed. As a result, it is found that the solution of multilateration method converges into an allowable limit and the method is better than other two methods in accuracy. And it is found that if the known points are over five points, the solution of Resection and Intersection method can also converge into an allowable limit.

  • PDF

Improvement of Multilateration using Vector Prediction Algorithm and Kalman Filter (벡터 예측 알고리즘과 칼만 필터를 이용한 다변측량법 개선)

  • Kim, Jung-Ha;Joo, Yang-Ick;Lee, Sung-Geun;Park, Sang-Gug;Seo, Dong-Hoan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.12
    • /
    • pp.2792-2799
    • /
    • 2012
  • Multilateration that consists of three or more fixed nodes has been widely used in the field of indoor real time location system(RTLS). However, when one or two among fixed nodes are partially out of communication reachability due to obstruction and unstable node, it is difficult to obtain an efficient location information. In order to improve the challenges of poor ranging measurements and fluctuations in these environment, this paper presents, based on TOF(Time of Flight), a new algorithm which can reduce the inherent ranging measurements errors in the conventional multilateration using a vector prediction algorithm for the displacement estimation of mobile node and Kalman filter for an efficient distance average. Even if a person moves with mobile node and then it fails ranging measurement from some of fixed nodes, the proposed algorithm using a present and previous measurement value can predict the distance between mobile node and fixed node which fails ranging measurement. The experimental results are shown that the proposed system improves the localization accuracy and efficiency compared with conventional method, respectively.

Robust Filtering Algorithm for Improvement of Air Navigation System (항행시스템 성능향상을 위한 강인한 필터링 알고리즘)

  • Cho, Taehwan;Kim, Jinhyuk;Choi, Sangbang
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.2
    • /
    • pp.123-132
    • /
    • 2015
  • Among various fields of the CNS/ATM, the surveillance field which includes ADS-B system, MLAT system, and WAM system is implemented. These next generation systems provide superior performance in tracking aircrafts. However, They still have error. In this paper, filtering algorithm is proposed in order to enhance aircraft tracking performance of ADS-B, MLAT, and WAM systems. The proposed method is a Robust Interacting Multiple Model filter, called Robust IMM filter, that improves IMM filter. The Robust IMM filter can not only improves the aircraft tracking performance but also track aircraft continually using estimates calculated from the filter when data losses occur. The simulation results of the proposed aircraft tracking methods show that the filtering data provides a better performance up to an average of 19.21%.

Air Surveillance Using Mode-S Multilateration (모드-S 다변측정법을 이용한 항공감시기술 분석 및 전망)

  • Kim, Chang-Hwan;Han, Jae-Hyun;Kang, Ja-Young
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.3
    • /
    • pp.9-20
    • /
    • 2010
  • Surveillance is an enabler of safety with respect to aircraft separation and as a consequence capacity and efficiency with respect to aircraft operations. The new emerging technology among modern civil aviation surveillance is Multilateration (MLAT) which would affect on the surveillance capacity with both side of surveillance signal and operational properties. Multilateration system is needed to receive the signal which must reach at least 3 ground receivers simultaneously and has the effect that will have on with the ultimate accuracy. In this paper, the principle and the system configuration are reviewed. And its benefit of development is considered with use in situations where it is difficult to locate tranditional radar. This MLAT requires no additional avionics equipment to supply service with more accurate and less expensive. And it is able to enhance performance that meets international standards and extend the investment of air navigation service providers with reducing environmental impact by utilizing a small footprint on existing structures. Finally, it can be added to meet a wide range of coverage requirements and future surveillance needs.