• Title/Summary/Keyword: Multiple Lyapunov function

Search Result 21, Processing Time 0.028 seconds

Adaptive Control of a Class of Nonlinear Systems Using Multiple Parameter Models

  • Lee Choon-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.428-437
    • /
    • 2006
  • Many physical systems are hybrid in the sense that they have continuous behaviors and discrete phenomena. In control system with multiple models, switching strategy and stability of the closed-loop system under switching are very important issues. In this paper, a novel adaptive control scheme based on multiple parameter models is proposed to cope with a change in Parameters. Switching strategy guarantees the non-increase in the global control Lyapunov function if the estimation of Lyapunov function value converges. Least-square estimation is used to find the estimated value of the Lyapunov function. Switching and adaptation law guarantees the stability of closed-loop system in the sense of Lyapunov. Simulation results on anti-lock brake system are shown to verify the effectiveness of the proposed controller in view of a large change in system parameters.

Design of a Stabilizing Controller for Hybrid systems with as Application to Longitudinal Spacing Control in a Vehicle Platoon (다중 Lyapunov 기방 하이브리드 시스템에 안정화 제어기 설계 및 군집 차량의 종방향 거리 제어시스템의 용용)

  • Kim, Jin-Byun;Park, Jae-Weon;Kim, Young-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.6
    • /
    • pp.477-486
    • /
    • 2001
  • Many physical systems can be modeled by incorporating continuous and discrete event nature together. Such hybrid systems contain both continuous and discrete states that influence the dynamic be-havior of the systems. There has been an increasing interest in thers types of systems during the last dec-ade, mostly due to the growing usage of computers in the control of physical plants but also as a result of the hybrid nature of physical processes. The stability theory for hybrid systems is considered as extension of Lyapunov theory where the existence of an abstract energy function satisfying certain properties verifies stability, called multiple Lyapunov theory. In this paper, a hybrid stabilizing controller is proposed using the control Lyapunov function method and multiple Lyapunov theory, and the proposed method is applied to lon-gitudinal spacing control in a vehicle platoon for intelligent transportation systems(ITS).

  • PDF

Switching Control for End Order Nonlinear Systems by Avoiding Singular Manifolds (특이공간 회피에 의한 2차 비선형 시스템의 스위칭 제어기 설계)

  • Yeom, D.H.;Im, K.H.;Choi, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.315-318
    • /
    • 2003
  • This paper proposes a switching control method applicable to any affine, 2nd order nonlinear system with single input. The key contribution is to develop a control design method which uses a piecewise continuous Lyapunov function non-increasing at every discontinuous point. The proposed design method requires no restrictions except full state availability. To obtain a non-increasing, piecewise continuous Lyapunov function, we change the sign of off-diagonal term s of the positive definite matrix composing the former Lyapunov function according to the sign of the Inter-connection term. And we use the solution of inequalities which guarantee each Lyapunov function is non-increasing at any discontinuous point.

  • PDF

Stability Analysis of Kalman Filter by Orthonormalized Compressed Measurement

  • Hyung Keun Lee;Jang Gyu Lee
    • KIEE International Transaction on Systems and Control
    • /
    • v.2D no.2
    • /
    • pp.97-107
    • /
    • 2002
  • In this paper, we propose the concept of orthonormalized compressed measurement for the stability analysis of discrete linear time-varying Kalman filters. Unlike previous studies that deal with the homogeneous portion of Kalman filters, the proposed Lyapunov method directly deals with the stochastically-driven system. The orthonorrmalized compressed measurement provides information on the a priori state estimate of the Kalman filter at the k-th step that is propagated from the a posteriori state estimate at the previous block of time. Since the complex multiple-step propagations of a candidate Lyapunov function with process and measurement noises can be simplified to a one-step Lyapunov propagation by the orthonormalized compressed measurement, a stochastic radius of attraction can be derived that would be impractically difficult to obtain by the conventional multiple-step Lyapunov method.

  • PDF

ANTI-PERIODIC SOLUTIONS FOR BAM NEURAL NETWORKS WITH MULTIPLE DELAYS ON TIME SCALES

  • Shu, Jiangye;Li, Yongkun
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.279-292
    • /
    • 2011
  • In this paper, we consider anti-periodic solutions of the following BAM neural networks with multiple delays on time scales: $$\{{x^\Delta_i(t)=-a_i(t)e_i(x_i(t))+{\sum\limits^m_{j=1}}c_{ji}(t)f_j(y_j(t-{\tau}_{ji}))+I_i(t),\atop y^\Delta_j(t)=-b_j(t)h_j(y_j(t))+{\sum\limits^n_{i=1}}d_{ij}(t)g_i(x_i(t-{\delta}_{ij}))+J_j(t),}\$$ where i = 1, 2, ..., n,j = 1, 2, ..., m. Using some analysis skills and Lyapunov method, some sufficient conditions on the existence and exponential stability of the anti-periodic solution to the above system are established.

Fuzzy Modeling Technique of Nonlinear Dynamical System and Its Stability Analysis (비선형 시스템의 퍼지 모델링 기법과 안정도 해석)

  • So, Myeong Ok;Ryu, Gil Su;Lee, Jun Tak
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.101-101
    • /
    • 1996
  • This paper presents the linearized fuzzy modeling technique of nonlinear dynamical system and the stability analysis of fuzzy control system. Firstly, the nonlinear system is partitionized by multiple linear fuzzy subcontrol systems based on fuzzy linguistic variables and fuzzy rules. Secondly, the disturbance adaptaion controllers which guarantee the global asymptotic stability of each fuzzy subsystem by an optimal feedback control law are designed and the stability analysis procedures of the total fuzzy control system using Lyapunov functions and eigenvalues are discussed in detail through a given illustrative example.

Fuzzy Modeling Technique of Nonlinear Dynamic System and Its Stability Analysis (비선형 시스템의 퍼지 모델링 기법과 안정도 해석)

  • 소명옥;류길수;이준탁
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.33-39
    • /
    • 1996
  • This paper presents the linearized fuzzy modeling technique of nonlinear dynamical system and the stability analysis of fuzzy control system. Firstly, the nonlinear system is partitionized by multiple linear fuzzy subcontrol systems based on fuzzy linguistic variables and fuzzy rules. Secondly, the disturbance adaptaion controllers which guarantee the global asymptotic stability of each fuzzy subsystem by an optimal feedback control law are designed and the stability analysis procedures of the total fuzzy control system using Lyapunov functions and eigenvalues are discussed in detail through a given illustrative example.

  • PDF

Path Tracking Controller Design for Surface Vessel Based on Sliding Mode Control Method with Switching Law (슬라이딩 모드 제어와 스위칭 기법에 기반한 수상함의 경로 추종 제어기 설계)

  • Lee, JunKu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.108-118
    • /
    • 2017
  • In this paper, the path tracking controller for a surface vessel based on the sliding mode control (SMC) with the switching law is proposed. In order to have no restriction on movement and improved tracking performance, the proposed control system is developed as follows: First, the kinematic and dynamic models in Cartesian coordinates are considered to solve the singularity problem at the origin. Second, the new multiple sliding surfaces are designed with the SMC and approach angle concept to solve the under-actuated property. Third, the switching control system is designed to improve tracking performance. To prove the stability of the proposed switching system under the arbitrary switching, the Lyapunov stability analysis method with the common Lyapunov function is used. Finally, the computer simulations are performed to demonstrate the performance, effectiveness and stability of the proposed tracking controller of a surface vessel.

Adaptive stabilization for nonlinear systems with multiple unknown virtual control coefficients (다수의 미지 가상 입력 계수들을 가지는 비선형 시스템에 대한 적응 안정화)

  • Seo, Sang-Bo;Jung, Jin-Woo;Seo, Jin-Heon;Shim, Hyung-Bo
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.76-78
    • /
    • 2009
  • This paper considers the problem of global adaptive regulation for a class of nonlinear systems which have multiple unknown virtual control coefficient. By using a new parameter estimator and backstepping technique, we design a smooth state feedback control law, parameter update laws that estimate the unknown virtual control coefficients, and a continuously differentiable Lyapunov function which is positive definite and proper.

  • PDF

Design of Multiple Sliding Surface Control System for a Quadrotor Equipped with a Manipulator (매니퓰레이터 장착 쿼드로터를 위한 다중 슬라이딩 평면 제어의 시스템 설계)

  • Hwang, Nam Eung;Park, Jin Bae;Choi, Yoon Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.7
    • /
    • pp.502-507
    • /
    • 2016
  • In this paper, we propose a tracking control method for a quadrotor equipped with a 2-DOF manipulator, which is based on the multiple sliding surface control (MSSC) method. To derive the model of a quadrotor equipped with a 2-DOF manipulator, we obtain the models of a quadrotor and a 2-DOF manipulator based on the Lagrange-Euler formulation separately - and include the inertia and the reactive torque generated by a manipulator when these obtained models are combined. To make a quadrotor equipped with a manipulator track the desired path, we design a double-loop controller. The desired position is converted into the desired angular position in the outer controller and the system's angle tracks the desired angular position through the inner controller based on the MSSC method. We prove that the position-tracking error asymptotically converges to zero based on the Lyapunov stability theory. Finally, we demonstrate the effectiveness of the proposed control system through a computer simulation.