• Title/Summary/Keyword: Multiple coherence function

Search Result 26, Processing Time 0.024 seconds

Transfer Path Identification of Road Noise;Using Multiple Coherence Function and Relative Acceleration (노면가진소음의 전달경로 파악;다중기여도함수 및 연결부위의 상대가속도 이용)

  • 김영기;배병국;김양한;김광준;김명규
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.84-92
    • /
    • 1997
  • Among the various sources of vehicle interior noise, this paper concerns the road induced noise ; the identification of its transfer path by using experimental method. Multiple input and single output model is taken as a noise generation model. Because it is impossible to measure the road imput forces directly, the acceleration signals are measured on four axle;three directions for each point. By considering the cross correlations of input signals, four uncorrelated source groups are taken. Multiple coherence function is employed to investigate the contribution of each group. In addtion, to identify the detailed path through the suspension systems, the contributions of all possible paths are ranked by using the coherence functions between interior noise and the relative accelerations of connections such as bushings and mountings. Measurements are performed with passenger vehicle traveling on concrete and asphalt roads at 60㎞/h.

  • PDF

Vibration Identification of Gasoline Direct Injection Engine Based on Partial Coherence Function (부분기여도 함수를 이용한 직접분사 가솔린 엔진 부품의 진동원 분석)

  • Chang, Ji-Uk;Lee, Sang-Kwon;Park, Jong-Ho;Kim, Byung-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1371-1379
    • /
    • 2012
  • This paper presents a method for estimating the contribution of vibration sources in gasoline direct injection engine parts with a multiple-input system. A partial coherence function was used to identify the cause of the linear dependence indicated by an ordinary coherence function. To apply the partial coherence function to vibration source identification in the powertrain system of a gasoline direct injection engine, a virtual model of a two-input and single-output system is simulated. For the validation of this model, the vibration of the powertrain parts was measured by using triaxial accelerometers attached to the selected vibration sources-a high-pressure pump, fuel rail, injector, and pressure sensor. After calculating the partial coherence between each source based on the virtual model, the vibration contribution of the powertrain system is calculated. This virtual model based on the partial coherence function is implemented to determine the quantitative vibration contribution of each powertrain part.

Contribution analysis of underwater radiation noise source using partial coherence function (부분상관 함수를 이용한 수중방사소음 소음원 기여도 분석)

  • Kim, Tae Hyeong;Choi, Jae Yong;Oh, Jun Seok;Kim, Seong Yong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.2
    • /
    • pp.118-124
    • /
    • 2016
  • In this paper, contribution analysis method using a partial coherence function is dealt with in the case of underwater radiation noise. When performing the contribution analysis using a partial coherence function, it is important to select the order of system input. But in the case of frequency correlated systems, it is very difficult to properly select the order of system input. In order to solve this problem, the contribution analysis is performed by subdividing the area of contribution using multiple coherence function. And the new contribution analysis method is presented by using the relationship between the contribution characteristic matrix and multiple coherence function. In order to validate the new method, calculation is performed about multi-input / single-output model which is composed of sine waves. The result of calculation shows that it is possible to derive the exact contribution values.

The evaluation of vibration contribution about the eccentric rotor system by multiple dimensional spectral analysis (다차원 해석법을 이용한 편심 회전체의 전달 기여도 평가)

  • 조문갑;조용구;김동원;이정윤;오재응
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.298-303
    • /
    • 2003
  • The eccentric rotor system has various problems by vibration of unbalance mass. Specially, it is difficult to analyze vibration problem for the drum washing machine due to correlation of transmission paths. We analyze the mechanical structure by multidimensional spectral density to identify the maximum vibration magnitude at the frequency domain. It estimates the coherence function of the signals to pass the transmission paths. In case of the drum washing machine, because the transmission paths are correlated partially it needs to determinate the priority ranking. And the correlated parts are eliminated using conditioned spectral density function. Finally the shielding effect method confirms the reasonability of the modeling.

  • PDF

The Effects of Noise/Signal Ratios on Noise/Energy Source Identification in Linear Systems (선형계에 있어서의 잡음/신호비가 소음/진동원 규명에 미치는 영향)

  • 박정석;김광준;이종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1819-1830
    • /
    • 1991
  • The problems associated with noise/energy source identification using multiple input/single output model in linear systems are investigated. Partial coherence function is formulated for the model introducing a virtual force and extraneous noises into the conventional two input/single output system. The analytical results show that the partial coherence function in two input/single output linear system is the function of noise/signal ratios when multiple inputs are mutually coherent and extraneous noises exist. Parametric studies for ordinary and partial coherence functions are carried out to demonstrate the effects of noise/signal ratios for these functions.

A Study on Vibration Transfer Path Identification of Vehicle Driver's Position by Multi-dimensional Spectral Analysis (다차원 스펙트럼 해석법을 이용한 차실내 운전자석 진동전달경로 규명에 관한 연구)

  • Lee, You-Yub;Park, Sang-Gil;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.8
    • /
    • pp.741-746
    • /
    • 2007
  • In this study, transfer path identification and output estimation are simulated by multi-dimension spectral analysis method (MDSA). Multi -input/single-output system give expression the vehicle suspension which each inputs are correlated reciprocally. In case of correlating with inputs, the system needs separating the each input signal by MDSA. Main simulations are about finding effective input by coherent output spectrum and selecting optimal input's number by multiple coherence function. Also, by shielding transfer path of each input, transfer path characteristic is identified in terms of overall integrated contribution level.

Noise Source Identification of a Pulse Combustion Burner Using Digital Signal Processing Techniques (디지탈 신호처리 기법을 이용한 맥동연소기의 소음원 규명에 관한 연구)

  • Kim, D.W.;Cho, J.G.;Lee, K.S.;Oh, J.E.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.2
    • /
    • pp.103-113
    • /
    • 1991
  • This paper presents a method for estimating the noise source contribution of a pulse combustion burner in a multiple input system where the input sources may be coherent each other. By coherence function method, it is found that the biggest part of the noise source in the pulse combustion burner is generated by the part of the combustion chamber. This analysis is modeled as three input / single output system because the noise generating mechanism of the pulse combustion burner is very complicated. The coherence function method is proved to be useful tool for the identification of noise source. The overall levels of the radiated source pressure by coherence function method are compared with those measured and calculated by the frequency response function approach. The experimental results have shown a good agreement with the results calculated by the coherence function method when the input sources are coherent strongly each other. The estimation of shield effect by FRF method indicates that significant reduction can be achieved in sound radiation if only transmission path generated by the part of combustion chamber is acoustically shield.

  • PDF

Transfer Path Analysis and Interior Noise Estimation of the Road Noise Using Multi-Dimensional Spectral Analysis Method (다차원 스펙트럼 해석법을 이용한 로드노이즈의 전달경로 해석 및 실내음압 예측)

  • Park, Sang-Gil;Kang, Kwi-Hyun;Hwang, Sung-Uk;Oh, Ki-Seok;Rho, Kuk-Hee;Oh, Jae-Eung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.779-784
    • /
    • 2008
  • This paper presents a the method for estimating the noise source contribution on the road noise of the vehicle in a multiple input system where the input sources may be coherent with each other. By coherence function method, it is found that the biggest part of the noise source in the road noise is generated by structural vibration on the mechanical-acoustic transfer functions of vehicles. This analysis is modeled as four input/single output system because the noise is generated with four wheels that mechanism of the road noise is very complicated. The coherence function method is proved to be useful tool for identifying of noise source. The overall levels of the interior noise be coherence function method are compared with those measured and calculated by the frequency response function approach using mechanical excitation test. The experimental results have shown a good agreement with the results calculated by the coherence function method when the input sources are coherent strongly each other. The estimation of the road noise indicates that significant coherent can be achieved in the vehicle interior noise.

  • PDF

Transfer Path Analysis and Interior Noise Estimation of the Road Noise Using Multi-dimensional Spectral Analysis Method (다차원 스펙트럼 해석법을 이용한 로드노이즈의 전달경로 해석 및 실내음압 예측)

  • Park, Sang-Gil;Kang, Kwi-Hyun;Hwang, Sung-Wook;Oh, Ki-Seok;Rho, Kuk-Hee;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.11
    • /
    • pp.1206-1212
    • /
    • 2008
  • This paper presents a the method for estimating the noise source contribution on the road noise of the vehicle in a multiple input system where the input sources may be coherent with each other. By coherence function method, it is found that the biggest part of the noise source in the road noise is generated by structural vibration on the mechanical-acoustic transfer functions of vehicles. This analysis is modeled as four input/single output system because the noise is generated with four wheels that mechanism of the road noise is very complicated. The coherence function method is proved to be useful tool for identifying of noise source. The overall levels of the interior noise be coherence function method are compared with those measured and calculated by the frequency response function approach using mechanical excitation test. The experimental results have shown a good agreement with the results calculated by the coherence function method when the input sources are coherent strongly each other. The estimation of the road noise indicates that significant coherent can be achieved in the vehicle interior noise.

Coherent Analysis of vehicle HVAC Using the MDSA Method (다차원 해석법을 이용한 자동차 공조시스템의 기여도분석)

  • Oh Jae-Eung;Hwang DongKun;Abu Aminudin;Lee Jung-Youn;Kim SungSoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.143-150
    • /
    • 2005
  • To verify applicability of multi-dimensional spectral analysis (MDSA) fur noise source identification two different approaches which are frequency response and coherent function have been investigated. The coherence function approach appears able to separate the correlated system when the noise sources were coherent. In this study, we identify contribution of structure-borne-noise of vehicle HVAC system using MDSA method. Firstly, to identify the applicability of MDSA method, 4-inputs of vehicle HVAC system were the signals measured by accelerometers attached on the selected noise sources which were composed of blower, evaporator, heater and duct. While 1-output which was driver's position sound was the SPL signals measured by a remote microphone, when the blower motor was operating. We identify efficiency of systems modeled with four Inputs/single output through ordinary coherence function (OCF) and partial coherence function (PCF). As a result of experiment, the blower accounted for $62-88\%$ of the overall level of sound energy density. Also, according to the analysis of acoustic signal and vibration signals measurement, an investigation of the noise source identification in the vehicle HVAC is presented. With the sound intensity method, the major sources of the vehicle HVAC radiation are verified. Also the method of improving the noise reduction is proposed by attaching damping patch access to blower motor and noise reduction is verified.