• Title/Summary/Keyword: Multiple faults detection and isolation

Search Result 21, Processing Time 0.036 seconds

Multiple Faults Detection and Isolation via Decentralized Sliding Mode Observer for Reconfigurable Manipulator

  • Zhao, Bo;Li, Chenghao;Ma, Tianhao;Li, Yuanchun
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2393-2405
    • /
    • 2015
  • This paper considers a decentralized multiple faults detection and isolation (FDI) scheme for reconfigurable manipulators. Inspired by their modularization property, a global sliding mode (GSM) based stable adaptive fuzzy decentralized controller is investigated for the system in fault free, while for the system suffering from multiple faults (actuator fault and sensor fault), the decentralized sliding mode observer (DSMO) is employed to detect their occurrence. Hereafter, the time and location of faults can be determined by a fault isolation scheme via a bank of DSMOs. Finally, the effectiveness of the proposed schemes in controlling, detecting and isolating faults is illustrated by the simulations of two 3-DOF reconfigurable manipulators with different configurations successfully.

Multiple faults diagnosis of a linear system using ART2 neural networks (ART2 신경회로망을 이용한 선형 시스템의 다중고장진단)

  • Lee, In-Soo;Shin, Pil-Jae;Jeon, Gi-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.3
    • /
    • pp.244-251
    • /
    • 1997
  • In this paper, we propose a fault diagnosis algorithm to detect and isolate multiple faults in a system. The proposed fault diagnosis algorithm is based on a multiple fault classifier which consists of two ART2 NN(adaptive resonance theory2 neural network) modules and the algorithm is composed of three main parts - parameter estimation, fault detection and isolation. When a change in the system occurs, estimated parameters go through a transition zone in which residuals between the system output and the estimated output cross the threshold, and in this zone, estimated parameters are transferred to the multiple faults classifier for fault isolation. From the computer simulation results, it is verified that when the proposed diagnosis algorithm is performed successfully, it detects and isolates faults in the position control system of a DC motor.

  • PDF

Performance Improvement of Multiple Observer based FDIS using Fuzzy Logic (퍼지논리를 이용한 다중관측자 구조 FDIS의 성능개선)

  • Ryu, Ji-Su;Lee, Kee-Sang
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.4
    • /
    • pp.444-451
    • /
    • 1999
  • A diagnostic rule-base design method for enhancing fault detection and isolation performance of multiple obsever based fault detection isolation schemes (FIDS) is presented. The diagnostic rule-base has a hierarchical framework to perform detection and isolation of faults of interest, and diagnosis of process faults. The decision unit comprises a rule base and a fuzzy inference engine and removes some difficulties of conventional decision unit which includes crisp logic with threshold values. Emphasis is placed on the design and evaluation methods of the diagnostic rult-base. The suggested scheme is applied to the FDIS design for a DC motor driven centrifugal pump system.

  • PDF

An Integrated Fault Detection and Isolation Method for Sensors and Actuators of LEO Satellite (저궤도 인공위성의 센서 및 구동기 통합 고장검출 및 분리 기법)

  • Lim, Jun-Kyu;Lee, Jun-Han;Park, Chan-Gook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.11
    • /
    • pp.1117-1124
    • /
    • 2011
  • An integrated fault detection and isolation method is proposed in this paper. The main objective of this paper is development fault detection, isolation and diagnosis algorithm based on the DKF (Decentralized Kalman Filter) and the bank of IMM (Interacting Multiple Model) filters using penalty scalar for both partial and total faults and the outlier detection algorithm for preventing false alarm also included. The proposed FDI (Fault Detection and Isolation) scheme is developed in four phases. In the first phase, the outlier detection filter is designed to prevent false alarm as a pre-filter. In the second phases, two local filters and master filter are designed to detect sensor faults. In the third phases, the proposed FDI scheme checks sensor residual to isolate sensor faults and 11 EKFs actuator fault models are designed to detect wherever actuator faults occur. In the last phases, four filters are designed to identify the fault type which is either the total fault or partial fault. The developed scheme can deal with not only sensor and actuator faults, but also preventing false alarm. An important feature of the proposed FDI scheme can decreases fault isolation time and figure out not only fault detection and isolation but also fault type identification. To verify the proposed FDI algorithm performance, the Simulator is also developed under the Matlab/Simulink environment.

Fault Detection and Isolation using navigation performance-based Threshold for Redundant Inertial Sensors

  • Yang, Cheol-Kwan;Shim, Duk-Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2576-2581
    • /
    • 2003
  • We consider fault detection and isolation (FDI) problem for inertial navigation systems (INS) which use redundant inertial sensors and propose an FDI method using average of multiple parity vectors which reduce false alarm and wrong isolation, and improve correct isolation. We suggest optimal isolation threshold based on navigation performance, and suggest optimal sample number to obtain short detection time and to enhance detectability of faults little larger than threshold.

  • PDF

A Study on Actuator Fault Detection and Isolation in Airplanes using Fuzzy Logic (퍼지로직을 이용한 항공기 고장 검출 및 분리)

  • Lee Jang-Ho;Kim You-Dan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.3 s.18
    • /
    • pp.140-148
    • /
    • 2004
  • Fault detection and isolation(FDI) and reconfigurable flight control system provide better survivability even though actuator faults occur. In this study, a new fault detection and isolation algorithm is proposed using fuzzy logic. When the FDI system detects the actuator fault, the fuzzy logic investigates the state variables to find which actuator has fault. Proposed fuzzy detection algorithm detect not only a single fault but also multiple faults. After detecting the fault, the reconfigurable flight control system begins operating for compensating the effects of the fault. A numerical simulation using six degree-of-freedom nonlinear aircraft model is performed to verity the performance of the proposed fault detection and isolation scheme.

Diagnosis of Multiple Crosstalk-Faults in Optical Cross Connects for Optical Burst Switching (광 버스트 스위칭을 위한 광 교환기에서의 다중 누화고장 진단기법)

  • 김영재;조광현
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.3
    • /
    • pp.251-258
    • /
    • 2003
  • Optical Switching Matrix (OSM) or Optical Multistage Interconnection Networks (OMINs) comprising photonic switches have been studied extensively as important interconnecting blocks for Optical Cross Connects (OXC) based on Optical Burst Switching (OBS). A basic element of photonic switching networks is a 2$\times$2 directional coupler with two inputs and two outputs. This paper is concerned with the diagnosis of multiple crosstalk-faults in OSM. As the network size becomes larger in these days, the conventional diagnosis methods based on tests and simulation become inefficient, or even more impractical. We propose a simple and easily implementable algorithm for detection and isolation of the multiple crosstalk-faults in OSM. Specifically. we develop an algorithm for isolation of the source fault in switching elements whenever the multiple crosstalk-faults arc detected in OSM. The proposed algorithm is illustrated by an example of 16$\times$16 OSM.

An Instrument Fault Diagnosis Scheme for Direct Torque Controlled Induction Motor Driven Servo Systems (직접토크제어 유도전동기 구동 서보시스템을 위한 장치고장 진단 기법)

  • Lee, Kee-Sang;Ryu , Ji-Su
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.6
    • /
    • pp.241-251
    • /
    • 2002
  • The effect of sensor faults in direct torque control(DTC) based induction motor drives is analyzed and a new Instrument fault detection isolation scheme(IFDIS) is proposed. The proposed IFDIS, which operated in real-time, detects and isolates the incipient fault(s) of speed sensor and current sensors that provide the feedback information. The scheme consists of an adaptive gain scheduling observer as a residual generator and a special sequential test logic unit. The observer provides not only the estimate of stator flux, a key variable in DTC system, but also the estimates of stator current and rotor speed that are useful for fault detection. With the test logic, the IFDIS has the functionality of fault isolation that only multiple estimator based IFDIS schemes can have. Simulation results for various type of sensor faults show the detection and isolation performance of the IFDIS and the applicability of this scheme to fault tolerant control system design.

Simultaneous Fault Isolation of Redundant Inertial Sensors based on the Reduced-Order Parity Vectors

  • Yang, Cheol-Kwan;Shim, Duk-Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2188-2191
    • /
    • 2005
  • We consider a fault detection and isolation problem for inertial navigation systems which use redundant inertial sensors. We propose a FDI method using average of multiple parity vectors which reduce false alarm and wrong isolation, and improve correct isolation. We suggest the number of redundant sensors required to isolate simultaneous faults. The performance of the proposed FDI algorithm is analyzed by Monte-Carlo simulation.

  • PDF

Performance Improvement of MOS type FDIS using Fuzzy Logic (퍼지논리를 이용한 다중관측자 구조 FDIS의 성능개선)

  • Ryu, Ji-Su;Park, Tae-Geon;Lee, Kee-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.410-413
    • /
    • 1998
  • A passive approach for enhancing fault detection and isolation performance of multiple observer based fault detection isolation schemes(FDIS) is proposed. The FDIS has a hierarchical framework to perform detection and isolation of faults of interest, and diagnosis of process faults. The decision unit comprises of a rule base and fuzzy inference engine and removes some difficulties of conventional decision unit which includes crisp logic and threshold values. Emphasis is placed on the design and evaluation methods of the diagnostic rule base. The suggested scheme is applied for the FDIS design for a DC motor driven centrifugal pump system.

  • PDF