• Title/Summary/Keyword: Multiplicative inverse

Search Result 35, Processing Time 0.035 seconds

ON SOME CLASSES OF REGULAR ORDER SEMIGROUPS

  • Gao, Zhenlin;Zhang, Guijie
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.1
    • /
    • pp.29-40
    • /
    • 2008
  • Here, some classes of regular order semigroups are discussed. We shall consider that the problems of the existences of (multiplicative) inverse $^{\delta}po$-transversals for such classes of po-semigroups and obtain the following main results: (1) Giving the equivalent conditions of the existence of inverse $^{\delta}po$-transversals for regular order semigroups (2) showing the order orthodox semigroups with biggest inverses have necessarily a weakly multiplicative inverse $^{\delta}po$-transversal. (3) If the Green's relation $\cal{R}$ and $\cal{L}$ are strongly regular (see. sec.1), then any principally ordered regular semigroup (resp. ordered regular semigroup with biggest inverses) has necessarily a multiplicative inverse $^{\delta}po$-transversal. (4) Giving the structure theorem of principally ordered semigroups (resp. ordered regular semigroups with biggest inverses) on which $\cal{R}$ and $\cal{L}$ are strongly regular.

A High-Speed Hardware Design of IDEA Cipher Algorithm by Applying of Fermat′s Theorem (Fermat의 소정리를 응용한 IDEA 암호 알고리즘의 고속 하드웨어 설계)

  • Choi, Young-Min;Kwon, Yong-Jin
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.7 no.6
    • /
    • pp.696-702
    • /
    • 2001
  • In this paper, we design IDEA cipher algorithm which is cryptographically superior to DES. To improve the encryption throughput, we propose an efficient design methodology for high-speed implementation of multiplicative inverse modulo $2^{15}$+1 which requires the most computing powers in IDEA. The efficient hardware architecture for the multiplicative inverse in derived from applying of Fermat's Theorem. The computing powers for multiplicative inverse in our proposal is a decrease 50% compared with the existing method based on Extended Euclid Algorithm. We implement IDEA by applying a single iterative round method and our proposal for multiplicative inverse. With a system clock frequency 20MGz, the designed hardware permits a data conversion rate of more than 116 Mbit/s. This result show that the designed device operates about 2 times than the result of the paper by H. Bonnenberg et al. From a speed point of view, out proposal for multiplicative inverse is proved to be efficient.

  • PDF

An Efficient Algorithm for Computing Multiplicative Inverses in GF($2^m$) Using Optimal Normal Bases (최적 정규기저를 이용한 효율적인 역수연산 알고리즘에 관한 연구)

  • 윤석웅;유형선
    • The Journal of Society for e-Business Studies
    • /
    • v.8 no.1
    • /
    • pp.113-119
    • /
    • 2003
  • This paper proposes a new multiplicative inverse algorithm for the Galois field GF (2/sup m/) whose elements are represented by optimal normal basis type Ⅱ. One advantage of the normal basis is that the squaring of an element is computed by a cyclic shift of the binary representation. A normal basis element is always possible to rewrite canonical basis form. The proposed algorithm combines normal basis and canonical basis. The new algorithm is more suitable for implementation than conventional algorithm.

  • PDF

Gibbs Sampling for Double Seasonal Autoregressive Models

  • Amin, Ayman A.;Ismail, Mohamed A.
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.6
    • /
    • pp.557-573
    • /
    • 2015
  • In this paper we develop a Bayesian inference for a multiplicative double seasonal autoregressive (DSAR) model by implementing a fast, easy and accurate Gibbs sampling algorithm. We apply the Gibbs sampling to approximate empirically the marginal posterior distributions after showing that the conditional posterior distribution of the model parameters and the variance are multivariate normal and inverse gamma, respectively. The proposed Bayesian methodology is illustrated using simulated examples and real-world time series data.

Design of Variable Arithmetic Operation Systems for Computing Multiplications and Mulitplicative Inverses in $GF(2^m)$) ($GF(2^m)$ 상의 승법과 승법력 계산을 위한 가변형 산술 연산 시스템의 설계)

  • 박동영;강성수;김흥수
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.5
    • /
    • pp.528-535
    • /
    • 1988
  • This paper presents a constructing theory of variable arithmetic operation systems for computing multiplications and multiplicative inverse in GF(2**m) based on a modulo operation of degree on elements in Galois fields. The proposed multiplier is composed of a zero element control part, input element conversion part, inversion circuit, and output element conversion part. These systems can reduce reasonable circuit areas due to the common use of input/output element converison parts, and the PLA and module structure provice a variable property capable of convertible uses as arithmetic operation systems over different finite fields. This type of designs gives simple, regular, expandable, and concurrent properties suitable for VLSI implementation. Expecially, the multiplicative inverse circuit proposed here is expected to offer a characteristics of the high operation speed than conventional method.

  • PDF

Design of Advanced Multiplicative Inverse Operation Circuit for AES Encryption (AES 암호화를 위한 개선된 곱셈 역원 연산기 설계)

  • Kim, Jong-Won;Kang, Min-Sup
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.4
    • /
    • pp.1-6
    • /
    • 2020
  • This paper proposes the design of an advanced S-Box for calculating multiplicative inverse in AES encryption process. In this approach, advanced S-box module is first designed based on composite field, and then the performance evaluation is performed for S-box with multi-stage pipelining architecture. In the proposed S-Box architecture, each module for multiplicative inverse is constructed using combinational logic for realizing both small-area and high-speed. Through logic synthesis result, the designed 3-stage pipelined S-Box shows speed improvement of about 28% compared to the conventional method. The proposed advanced AES S-Box is performed modelling at the mixed level using Verilog-HDL, and logic synthesis is also performed on Spartan 3s1500l FPGA using Xilinx ISE 14.7 tool.

Bayesian Model Selection for Inverse Gaussian Populations with Heterogeneity

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.2
    • /
    • pp.621-634
    • /
    • 2008
  • This paper addresses the problem of testing whether the means in several inverse Gaussian populations with heterogeneity are equal. The analysis of reciprocals for the equality of inverse Gaussian means needs the assumption of equal scale parameters. We propose Bayesian model selection procedures for testing equality of the inverse Gaussian means under the noninformative prior without the assumption of equal scale parameters. The noninformative prior is usually improper which yields a calibration problem that makes the Bayes factor to be defined up to a multiplicative constant. So we propose the objective Bayesian model selection procedures based on the fractional Bayes factor and the intrinsic Bayes factor under the reference prior. Simulation study and real data analysis are provided.

  • PDF

A Fast Algorithm for Computing Multiplicative Inverses in GF(2$^{m}$) using Factorization Formula and Normal Basis (인수분해 공식과 정규기저를 이용한 GF(2$^{m}$ ) 상의 고속 곱셈 역원 연산 알고리즘)

  • 장용희;권용진
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.5_6
    • /
    • pp.324-329
    • /
    • 2003
  • The public-key cryptosystems such as Diffie-Hellman Key Distribution and Elliptical Curve Cryptosystems are built on the basis of the operations defined in GF(2$^{m}$ ):addition, subtraction, multiplication and multiplicative inversion. It is important that these operations should be computed at high speed in order to implement these cryptosystems efficiently. Among those operations, as being the most time-consuming, multiplicative inversion has become the object of lots of investigation Formant's theorem says $\beta$$^{-1}$ =$\beta$$^{2}$sup m/-2/, where $\beta$$^{-1}$ is the multiplicative inverse of $\beta$$\in$GF(2$^{m}$ ). Therefore, to compute the multiplicative inverse of arbitrary elements of GF(2$^{m}$ ), it is most important to reduce the number of times of multiplication by decomposing 2$^{m}$ -2 efficiently. Among many algorithms relevant to the subject, the algorithm proposed by Itoh and Tsujii[2] has reduced the required number of times of multiplication to O(log m) by using normal basis. Furthermore, a few papers have presented algorithms improving the Itoh and Tsujii's. However they have some demerits such as complicated decomposition processes[3,5]. In this paper, in the case of 2$^{m}$ -2, which is mainly used in practical applications, an efficient algorithm is proposed for computing the multiplicative inverse at high speed by using both the factorization formula x$^3$-y$^3$=(x-y)(x$^2$+xy+y$^2$) and normal basis. The number of times of multiplication of the algorithm is smaller than that of the algorithm proposed by Itoh and Tsujii. Also the algorithm decomposes 2$^{m}$ -2 more simply than other proposed algorithms.

AN INVERSE HOMOGENEOUS INTERPOLATION PROBLEM FOR V-ORTHOGONAL RATIONAL MATRIX FUNCTIONS

  • Kim, Jeon-Gook
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.717-734
    • /
    • 1996
  • For a scalar rational function, the spectral data consisting of zeros and poles with their respective multiplicities uniquely determines the function up to a nonzero multiplicative factor. But due to the richness of the spectral structure of a rational matrix function, reconstruction of a rational matrix function from a given spectral data is not that simple.

  • PDF

Low-latency Montgomery AB2 Multiplier Using Redundant Representation Over GF(2m)) (GF(2m) 상의 여분 표현을 이용한 낮은 지연시간의 몽고메리 AB2 곱셈기)

  • Kim, Tai Wan;Kim, Kee-Won
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.1
    • /
    • pp.11-18
    • /
    • 2017
  • Finite field arithmetic has been extensively used in error correcting codes and cryptography. Low-complexity and high-speed designs for finite field arithmetic are needed to meet the demands of wider bandwidth, better security and higher portability for personal communication device. In particular, cryptosystems in GF($2^m$) usually require computing exponentiation, division, and multiplicative inverse, which are very costly operations. These operations can be performed by computing modular AB multiplications or modular $AB^2$ multiplications. To compute these time-consuming operations, using $AB^2$ multiplications is more efficient than AB multiplications. Thus, there are needs for an efficient $AB^2$ multiplier architecture. In this paper, we propose a low latency Montgomery $AB^2$ multiplier using redundant representation over GF($2^m$). The proposed $AB^2$ multiplier has less space and time complexities compared to related multipliers. As compared to the corresponding existing structures, the proposed $AB^2$ multiplier saves at least 18% area, 50% time, and 59% area-time (AT) complexity. Accordingly, it is well suited for VLSI implementation and can be easily applied as a basic component for computing complex operations over finite field, such as exponentiation, division, and multiplicative inverse.