• Title/Summary/Keyword: Multivariable System

Search Result 247, Processing Time 0.029 seconds

Design of a direct multivariable neuro-generalised minimum variance self-tuning controller (직접 다변수 뉴로 일반화 최소분산 자기동조 제어기의 설계)

  • 조원철;이인수
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.4
    • /
    • pp.21-28
    • /
    • 2004
  • This paper presents a direct multivariable self-tuning controller using neural network which adapts to the changing parameters of the higher order multivariable nonlinear system with nonminimum phase behavior, mutual interactions and time delays. The nonlinearities are assumed to be globally bounded, and a multivariable nonlinear system is divided linear part and nonlinear part. The neural network is used to estimate the controller parameters, and the control output is obtained through estimated controller parameter. In order to demonstrate the effectiveness of the proposed algorithm the computer simulation is done to adapt the multivariable nonlinear nonminimm phase system with time delays and changed system parameter after a constant time. The proposed method compared with direct multivariable adaptive controller using neural network.

An Intelligent Multi-multivariable Dynamic Matrix Control Scheme for a 160 MW Drum-type Boiler-Turbine System

  • Mazinan, A.H.
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.240-245
    • /
    • 2012
  • A 160 MW drum-type boiler-turbine system is developed in the present research through a multi-multivariable dynamic matrix control (DMC) scheme and a multi-multivariable model approach. A novel intelligence-based decision mechanism (IBDM) is realized to support both model approach and control scheme. In such case, the responsibility of the proposed IBDM is to identify the best multivariable model of the system and the corresponding multivariable DMC scheme to cope with the system at each instant of time in an appropriate manner.

Design of a nonlinear Multivariable Self-Tuning PID Controller based on neural network (신경회로망 기반 비선형 다변수 자기동조 PID 제어기의 설계)

  • Cho, Won-Chul
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.6
    • /
    • pp.1-10
    • /
    • 2007
  • This paper presents a direct nonlinear multivariable self-tuning PID controller using neural network which adapts to the changing parameters of the nonlinear multivariable system with noises and time delays. The nonlinear multivariable system is divided linear part and nonlinear part. The linear controller are used the self-tuning PID controller that can combine the simple structure of a PID controllers with the characteristics of a self-tuning controller, which can adapt to changes in the environment. The linear controller parameters are obtained by the recursive least square. And the nonlinear controller parameters are achieved the through the Back-propagation neural network. In order to demonstrate the effectiveness of the proposed algorithm, the computer simulation results are presented to adapt the nonlinear multivariable system with noises and time delays and with changed system parameter after a constant time. The proposed PID type nonlinear multivariable self-tuning method using neural network is effective compared with the conventional direct multivariable adaptive controller using neural network.

Design of Multivariable Fuzzy Control System for Automatic Navigation of Ship

  • Lee, Jae-Hyun;Tak, Han-Ho;Lee, Sang-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.5
    • /
    • pp.433-440
    • /
    • 2001
  • In this paper, we propose an automatic navigation system of ship using multivariable fuzzy control system in dynamic sea environment. The proposed multivariable fuzzy control system consists of two subsystems with three inputs and two outputs. The effectiveness of the proposed multivariable fuzzy control system is shown by simulation results.

  • PDF

Multivariable Fuzzy Logic Controller using Decomposition of Control Rules (제어규칙 분해법을 이용한 다변수 퍼지 논리 제어기)

  • Lee, Pyeong-Gi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.3
    • /
    • pp.173-178
    • /
    • 2006
  • For the design of multivariable fuzzy control systems decomposition of control rules is a efficent inference method since it alleviates the complexity of the problem. In some systems, however, inference error of the Gupta's decomposition method is inevitable because of its approximate nature. In this paper we define indices of applicability which decides whether the decomposition method can be applied to a multivariable fuzzy system or not.

  • PDF

The construction of multivariable Reissner-Mindlin plate elements based on B-spline wavelet on the interval

  • Zhang, Xingwu;Chen, Xuefeng;He, Zhengjia
    • Structural Engineering and Mechanics
    • /
    • v.38 no.6
    • /
    • pp.733-751
    • /
    • 2011
  • In the present study, a new kind of multivariable Reissner-Mindlin plate elements with two kinds of variables based on B-spline wavelet on the interval (BSWI) is constructed to solve the static and vibration problems of a square Reissner-Mindlin plate, a skew Reissner-Mindlin plate, and a Reissner-Mindlin plate on an elastic foundation. Based on generalized variational principle, finite element formulations are derived from generalized potential energy functional. The two-dimensional tensor product BSWI is employed to form the shape functions and construct multivariable BSWI elements. The multivariable wavelet finite element method proposed here can improve the solving accuracy apparently because generalized stress and strain are interpolated separately. In addition, compared with commonly used Daubechies wavelet finite element method, BSWI has explicit expression and a very good approximation property which guarantee the satisfying results. The efficiency of the proposed multivariable Reissner-Mindlin plate elements are verified through some numerical examples in the end.

Multivariable QLQC/LTR depth control of underwater vehicles with deadzone (사역대를 갖는 수중운동체의 다변수 QLQG/LTR 심도제어)

  • 한성익;김종식;최중락
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.179-184
    • /
    • 1993
  • In general, for underwater vehicles in low speed, depthkeeping operations are carried out by using the variation of the weight in the seaway tank. The depthkeeping control of underwater vehicles is difficult because of the deadzone effect in the flow rate control valve. In this paper, the nonlinear multivariable QLQG/LTR control system using a seaway tank and bow planes is synthesized in order to improve the performance of the depth control system. The computer simulation results show the multivariable QLQG/LTR control system has good depth control performance under the deadzone effect.

  • PDF

Multivariable control of robot manipulators using fuzzy logic (퍼지논리를 이용한 로봇 매니퓰레이터의 다변수제어)

  • 이현철;한상완;홍석교
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.490-493
    • /
    • 1996
  • This paper presents a control scheme for the motion of a 2 DOF robot manipulator. Robot manipulators are multivariable nonlinear systems. Fuzzy logic is avaliable human-like control without complex mathematical operation and is suitable to nonlinear system control. In this paper, Implementation of fuzzy logic control of robotic manipulators shows. Algorithm has been performed with simulation packages MATRIXx and SystemBuild.

  • PDF

A Design on Robust Two-Degree-of-Freedom Multivariable Boiler-Turbine System (강인한 2자유도 다변수 보일러-터빈 시스템의 설계)

  • Hwang, C.S.;Kim, D.W.;Jung, H.S.;Lee, D.Y.;Cho, K.Y.;Nam, K.W.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.670-672
    • /
    • 1995
  • This paper deals with the robust two-degree-of-freedom multivariable control system using $H_{2}/H{\infty}$optimization method which can achieve the robust stability and the robust performance, simultaneously. The feedback controller can obtain the robust stability property. The feedforward controller can obtain the robust performance property under modelling error. The robust two-degree-of-freedom multivariable control system is applied to the nonlinear multivariable boiler-turbine system. The validity of the proposed method is verified though being compared with LQG/LTR design method.

  • PDF

Robust fault detection method for uncertain multivariable systems (불확실성을 갖는 다변수 시스템의 이상검출기법)

  • 홍일선;김대우;권오규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.710-713
    • /
    • 1996
  • This paper deals with the fault detection problem in uncertain linear multivariable systems having both model mismatch and noise. A robust detection presented by Kwon et al.(1994) for SISO systems has been here extended to the multivariable systems are derived. The model mismatch includes here linearization error as well as undermodelling. Comparisons are made with alternative fault detection method which do not account noise. The new method is shown to have good performance.

  • PDF