• Title/Summary/Keyword: Multivariate calibration

Search Result 46, Processing Time 0.195 seconds

A Bayesian Analysis in Multivariate Bioassay and Multivariate Calibration

  • Park, Nae-Hyun;Lee, Suk-Hoon
    • Journal of the Korean Statistical Society
    • /
    • v.19 no.1
    • /
    • pp.71-79
    • /
    • 1990
  • In the linear model which consider both the multivariate parallel-line bioassay and the multivariate linear calibration, this paper presents a Bayesian procedure which is an extension of Hunter and Lamboy (1981) and has several advantages compared with the non Bayesian techniques. Based on the methods of this article we discuss the effect of multivariate calibration and give a numerical example.

  • PDF

Multivariate Linear Calibration with Univariate Controlled Variable

  • Park, Nae-Hyun
    • Journal of the Korean Statistical Society
    • /
    • v.15 no.2
    • /
    • pp.107-117
    • /
    • 1986
  • This paper gives some new results on the multivariate linear calibration problem in the case when the controlled variable is univariate. Firstly, a condition under which one can obtain a finite closed confidence interval of $x_0$(unknown controlled variable) is suggested. Secondly, this article considers a criterion to find out whether the multivariate calibration significantly shortens the confidence interval of $x_0$ and supports this criterion by examples. Finally, a multivariate extension of the results in Lwin Maritz (1982) is given.

  • PDF

A Multivariate Calibration Procedure When the Standard Measurement is Also Subject to Error (표준 측정치의 오차를 고려한 다변량 계기 교정 절차)

  • Lee, Seung-Hoon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.19 no.2
    • /
    • pp.35-41
    • /
    • 1993
  • Statistical calibration is a useful technique for achieving compatibility between two different measurement methods, and it usually consists of two steps : (1) estimation of the relationship between the standard and nonstandard measurements, and (2) prediction of future standard measurements using the estimated relationship and observed nonstandard measurements. A predictive multivariate errors-in-variables model is presented for the multivariate calibration problem in which the standard as well as the nonstandard measurements are subject to error. For the estimation of the relationship between the two measurements, the maximum likelihood (ML) estimation method is considered. It is shown that the direct and the inverse predictors for the future unknown standard measurement are the same under ML estimation. Based upon large-sample approximations, the mean square error of the predictor is derived.

  • PDF

Simultaneous Determination of Tryptophan and Tyrosine by Spectrofluorimetry Using Multivariate Calibration Method (다변량 분석법을 이용한 Tryptophan과 Tyrosine의 형광분광법적 정량)

  • Lee, Sang-Hak;Park, Ju-Eun;Son, Beom-Mok
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.4
    • /
    • pp.309-317
    • /
    • 2002
  • A spectrofluorimetric method for the simultaneous determination of amino acids (tryptophan and tyrosine) based on the application of multivariate calibration method such as principal component regression and partial least squares (PLS) to luminescence measurements has been studied. Emission spectra of synthetic mixtures of two amino acids were obtained at excitation wavelength of 257 ㎚. The calibration model in PCR and PLS was obtained from the spectral data in the range of 280-500 ㎚ for each standard of a calibration set of 32 standards, each containing different amounts of two amino acids. The relative standard error of prediction ($RSEP_a$) was obtained to assess the model goodness in quantifying each analyte in a validation set. The overall relative standard error of prediction ($RSEP_m$) for the mixture obtained from the results of a validation set, formed by 6 independent mixtures was also used to validate the present method.

Simultaneous Determination of Anionic and Nonionic Surfactants Using Multivariate Calibration Method (다변량 분석법에 의한 Anionic Surfactant와 Nonionic Surfactant의 동시정량)

  • Sang Hak Lee;Soon Nam Kwon;Bum Mok Son
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.1
    • /
    • pp.19-25
    • /
    • 2003
  • A spectrophotometric method for the simultaneous determination of anionic and nonionic surfactant based on the application of multivariate calibration method such as principal component regression(PCR) and partial least squares(PLS) has been studied. The calibration models in PCR and PLS were obtained from the spectral data in the range of 400~700 nm for each standard of a calibration set of 26 standards, each containing different amounts of two surfactants. The relative standard error of prediction(RSEP$_{\alpha}$) was obtained to assess the model goodness in quantifying each analyte in a 5 validation samples which containing different amounts of two surfactants.

Comparison of Multivariate CUSUM Charts Based on Identification Accuracy for Spatio-temporal Surveillance (시공간 탐지 정확성을 고려한 다변량 누적합 관리도의 비교)

  • Lee, Mi Lim
    • Journal of Korean Society for Quality Management
    • /
    • v.43 no.4
    • /
    • pp.521-532
    • /
    • 2015
  • Purpose: The purpose of this study is to compare two multivariate cumulative sum (MCUSUM) charts designed for spatio-temporal surveillance in terms of not only temporal detection performance but also spatial detection performance. Method: Experiments under various configurations are designed and performed to test two CUSUM charts, namely SMCUSUM and RMCUSUM. In addition to average run length(ARL), two measures of spatial identification accuracy are reported and compared. Results: The RMCUSUM chart provides higher level of spatial identification accuracy while two charts show comparable performance in terms of ARL. Conclusion: The RMCUSUM chart has more flexibility, robustness, and spatial identification accuracy when compared to those of the SMCUSUM chart. We recommend to use the RMCUSUM chart if control limit calibration is not an urgent task.

A Dual Problem of Calibration of Design Weights Based on Multi-Auxiliary Variables

  • Al-Jararha, J.
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.2
    • /
    • pp.137-146
    • /
    • 2015
  • Singh (2013) considered the dual problem to the calibration of design weights to obtain a new generalized linear regression estimator (GREG) for the finite population total. In this work, we have made an attempt to suggest a way to use the dual calibration of the design weights in case of multi-auxiliary variables; in other words, we have made an attempt to give an answer to the concern in Remark 2 of Singh (2013) work. The same idea is also used to generalize the GREG estimator proposed by Deville and S$\ddot{a}$rndal (1992). It is not an easy task to find the optimum values of the parameters appear in our approach; therefore, few suggestions are mentioned to select values for such parameters based on a random sample. Based on real data set and under simple random sampling without replacement design, our approach is compared with other approaches mentioned in this paper and for different sample sizes. Simulation results show that all estimators have negligible relative bias, and the multivariate case of Singh (2013) estimator is more efficient than other estimators.

Non-Destructive Sorting Techniques for Viable Pepper (Capsicum annuum L.) Seeds Using Fourier Transform Near-Infrared and Raman Spectroscopy

  • Seo, Young-Wook;Ahn, Chi Kook;Lee, Hoonsoo;Park, Eunsoo;Mo, Changyeun;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.41 no.1
    • /
    • pp.51-59
    • /
    • 2016
  • Purpose: This study examined the performance of two spectroscopy methods and multivariate classification methods to discriminate viable pepper seeds from their non-viable counterparts. Methods: A classification model for viable seeds was developed using partial least square discrimination analysis (PLS-DA) with Fourier transform near-infrared (FT-NIR) and Raman spectroscopic data in the range of $9080-4150cm^{-1}$ (1400-2400 nm) and $1800-970cm^{-1}$, respectively. The datasets were divided into 70% to calibration and 30% to validation. To reduce noise from the spectra and compare the classification results, preprocessing methods, such as mean, maximum, and range normalization, multivariate scattering correction, standard normal variate, and $1^{st}$ and $2^{nd}$ derivatives with the Savitzky-Golay algorithm were used. Results: The classification accuracies for calibration using FT-NIR and Raman spectroscopy were both 99% with first derivative, whereas the validation accuracies were 90.5% with both multivariate scattering correction and standard normal variate, and 96.4% with the raw data (non-preprocessed data). Conclusions: These results indicate that FT-NIR and Raman spectroscopy are valuable tools for a feasible classification and evaluation of viable pepper seeds by providing useful information based on PLS-DA and the threshold value.

Analysis of biodiesel quality based on infrared spectroscopy and multivariate statistics (적외선 분광분석과 다변량 통계에 기반한 바이오디젤 품질분석)

  • Kim, Hye-Sil;Cho, Hyun-Woo;Liu, J. Jay
    • Analytical Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.214-222
    • /
    • 2012
  • ASTM (American Society for Testing and Materials) D6751-10 suggests analytical methods as well as specifications for biodiesel quality. However, it is expensive and time-consuming to follow the ASTM testing methods to analyze biodiesel and various impurities. This paper develops a quantitative analysis system for biodiesel and impurities based on Infrared spectroscopy and a multivariate statistical method, PLS (partial least squares). In addition, four different pre-processing techniques were compared for spectrum correction and noise reduction. Savitzky-Golay pre-processing showed the best performance.

Nomogram Estimating the Probability of Intraabdominal Abscesses after Gastrectomy in Patients with Gastric Cancer

  • Eom, Bang Wool;Joo, Jungnam;Kim, Young-Woo;Park, Boram;Yoon, Hong Man;Ryu, Keun Won;Kim, Soo Jin
    • Journal of Gastric Cancer
    • /
    • v.15 no.4
    • /
    • pp.262-269
    • /
    • 2015
  • Purpose: Intraabdominal abscess is one of the most common reasons for re-hospitalization after gastrectomy. This study aimed to develop a model for estimating the probability of intraabdominal abscesses that can be used during the postoperative period. Materials and Methods: We retrospectively reviewed the clinicopathological data of 1,564 patients who underwent gastrectomy for gastric cancer between 2010 and 2012. Twenty-six related markers were analyzed, and multivariate logistic regression analysis was used to develop the probability estimation model for intraabdominal abscess. Internal validation using a bootstrap approach was employed to correct for bias, and the model was then validated using an independent dataset comprising of patients who underwent gastrectomy between January 2008 and March 2010. Discrimination and calibration abilities were checked in both datasets. Results: The incidence of intraabdominal abscess in the development set was 7.80% (122/1,564). The surgical approach, operating time, pathologic N classification, body temperature, white blood cell count, C-reactive protein level, glucose level, and change in the hemoglobin level were significant predictors of intraabdominal abscess in the multivariate analysis. The probability estimation model that was developed on the basis of these results showed good discrimination and calibration abilities (concordance index=0.828, Hosmer-Lemeshow chi-statistic P=0.274). Finally, we combined both datasets to produce a nomogram that estimates the probability of intraabdominal abscess. Conclusions: This nomogram can be useful for identifying patients at a high risk of intraabdominal abscess. Patients at a high risk may benefit from further evaluation or treatment before discharge.