• Title/Summary/Keyword: Municipal wastewater treatment

Search Result 209, Processing Time 0.026 seconds

Effects of Landfill Leachate on the Treatment of Municipal Wastewater (매립지 침출수가 도시하수처리에 미치는 영향)

  • Jang, Ji-Hee;Kim, Yeong-Kwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.2
    • /
    • pp.117-123
    • /
    • 1996
  • A bench-scale continuous activated sludge system was operated in order to study the effects of solid waste landfill leachate on municipal wastewater treatment. The leachate sample was collected from Nanjido landfill. During the 7 weeks of operational period, the leachate content in the influent fed to the system was increased stepwise from 3% to 5% and 7%. The solids retention time was the major process control parameter, and it was 10 days. With the municipal wastewater alone, COD removal was 75%. The removal percents, however, decreased to 60% and 45% when the leachate content was 3% and 7%, respectively. For the wastewater spiked with the leachate, the sludge production was higher than for the municipal wastewater alone. Sludge settleability determined by SVI deteriorated with the increase of leachate content. The specific oxygen uptake rate, however, was measured higher as leachate content increased.

  • PDF

A Study on the Qualitative Characteristics of Non-Regulated Organic Pollutants in Municipal Wastewater (하수성분중 비규제대상 유기오염물질의 정성적 특성에 관한 연구)

  • Shin, Jinhwan;Jeoung, Youngdo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.3
    • /
    • pp.5-10
    • /
    • 2007
  • The paper presents results of qualitative analysis of non-regulated organic pollutants in municipal wastewater and treated municipal wastewater with flocculation, ozone and UV process using GC-MS. The majority of the pollutants in the influent of the municipal wastewater treatment facility were either food related or due to the diffuse discharge from products used both in households and in industry. In the case of biological treatment process removed some organic pollutants effectively. But some organic pollutants were not removed with biological treatment. Thus, additional steps to improve the quality of effluent municipal wastewater will require a more rigorous control of consumer products used in household and municipal wastewater process using advanced treatment processs. The obtained data contributed to the evaluation of pollutants discharges to the ecosystem as well as to the characterization of pollution sources in the basin.

  • PDF

Status, Trend and Strategy on Municipal Wastewater Management in China

  • Wang, Baozhen;Wang, Lin;Liu, Shuo;Wang, Li;Wang, Zheng
    • Journal of Wetlands Research
    • /
    • v.9 no.1
    • /
    • pp.47-60
    • /
    • 2007
  • The rapid development of economy in China at the expense of consuming huge amount of energy and resources, water resource in particular, which has resulted in the production and discharge of increasing amount of wastewater to the water environment. In order to effectively control the increasing water pollution trend, the State Council has stipulated that all the cities with population over 500,000 should reach wastewater treatment rate of 60% by 2005, and all the cities should reach the rate of 60% by 2010, of which Capital Beijing and all the province capital cities and important tourism cities should reach 70% then. By the end of 2005, of the 661 cities in China, 393 have built and operated municipal wastewater treatments with a total number of 790 sets, total treatment capacity of $80.91{\times}106m^3/d$ and total treatment rate of > 48%. Other 73 cities have started the construction of municipal wastewater treatment plants, and other 168 cities have started to prepare, planning and design of wastewater treatment plants. Most of municipal wastewater treatment plants in big cities in China operate normally and perform well with good quality of effluent in terms of wastewater treatment train, but the sewage sludge treatment is usually poor with big problems. It has been found that the small scale WWTPs using activated sludge process in the towns are usually operated and maintained abnormally because of lack of fund, skilled operators and energy. It is therefore suggested that the small scale MWWTPs in small cities and towns adopt appropriate technologies, of which the most available ones are multi-stage ponds, constructed wetlands and the combination of them for further purification and reuse of treated wastewater.

  • PDF

The Effect of HRT and SRT on Treatment Efficiency of Activated Sludge Process for Low Concentration Municipal Sewage (저농도 도시하수 처리를 위한 활성슬러지공정에서 HRT 및 SRT가 처리효율에 미치는 영향)

  • Whang, Gye Dae;Kim, Min Ho;Ko, Sae Bom
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.1
    • /
    • pp.64-73
    • /
    • 1997
  • Most of the municipal wastewater treatment plants operated in Korea are designed for high concentrations municipal sewage. However, activated sludge process employed by municipal wastewater treatment plant is operated at low organic loading. The objective of this study was to determine optimum operating condition of activated sludge process for treatment of low concentration municipal sewage. Three bench scale activated sludge reactors were operated to investigate the effect of HRT and SRT on the COD and TSS removal efficiency. The average concentration of TSS, SCOD, SBOD and TKN in influent were 118mg/l, 61mg/l, 21mg/l, and 12mg/l, respectively. The activated sludge reactors operated with various HRT and SRT showed about 89-93% TSS removal efficiency. HRT and SRT does not affect the TSS removal efficiency of actvatied sludge process significantly. However, HRT affected the SCOD removal efficiency slightly. As the HRT decreases from 13hours to 3hours, the SCOD removal efficiency decreases from 67% to 56%. The average effluent TCOD concentration of the reactor operated with 3hours of HRT was approximatly 40-45mg/l. Kinetic coefficient yield (Yt) and decay coefficients(Kd) were 0.594-0.954 mgMLVSS/mgCOD and $0.0197-0.0317day^{-1}$, respectively. Low concentration municipal sewage can be treated with 3 hours of HRT without effluent quality deterioration and SRT does not affect the substrate removal efficiency at this operation condition.

  • PDF

A Study on Characteristics of Water Quality in Wastewater according to the Washing of Municipal Solid Waste Incinerator (MSWI) Ash

  • Byun, Mi-Young;Kim, Hyung-Seok;Ahn, Ji-Whan;Kim, Hwan
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.296-300
    • /
    • 2001
  • In order to recycle the incineration ash (bottom ash and fly ash) generated from the incineration of municipal waste for a cement material, salts as well as heavy metal should be removed by the stabilization treatment. Most of these heavy metal and over 80% of salts are removed by a washing as a pre-treatment. However, wastewater which is another pollutant is generated by a washing, then proper treatment should be developed. First the characteristics of incineration ashes collected from two domestic full-sized incinerators were investigated and removal rate of salts and heavy metals from them also studied. The wastewater quality was compared to the criteria of the regulation by analyzing the characteristics of generated wastewater during the washing of incineration ash as a condition of liquid/solid ratio. Also, we tried to used this experimental results for the basic data to develop proper processing technique of municipal waste.

  • PDF

Treatment of Domestic Wastewater by the Application of Electrochemical Membrane Bioreactor and Generation of Bioelectricity

  • Yadav, Saurabh;Kamsonlian, Suantak;Pal, Shubham
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.532-537
    • /
    • 2022
  • The need for obtaining treated wastewater that meets high quality standards for discharge or reuse necessitates the use of highly efficient wastewater treatment techniques. In the present study, experiments have been carried out to reduce the concentration level of biological oxygen demand (BOD), chemical oxygen demand (COD), and total dissolved solids (TDS) from the wastewater sample. Treatment of sample of a real municipal wastewater collected from a sewage treatment plant (STP) was carried out in an electrochemical membrane bioreactor (EMBR). The EMBR was operated continuously for five days, and readings were taken at regular intervals. This paper has experimental results conducted in EMBR that indicate reduction of BOD, COD, and TDS levels of up to 32.25%, 29.25%, and 31.93%, respectively. Further, it was observed that a current of magnitude of 0.00752 mA was generated due to the metabolic activities of bacteria present in municipal wastewater, which gradually decreased day by day due to the decay of bacteria.

Optimization of Influencing Factors on Biomass Accumulation and 5-Aminolevulinic Acid (ALA) Yield in Rhodobacter sphaeroides Wastewater Treatment

  • Liu, Shuli;Li, Xiangkun;Zhang, Guangming;Zhang, Jie
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.11
    • /
    • pp.1920-1927
    • /
    • 2015
  • This study aimed to optimize four factors affecting biomass accumulation and 5-aminolevulinic acid (ALA) yield together with pollutants removal in Rhodobacter sphaeroides wastewater treatment. Results showed that it was feasible to produce biomass and ALA in R. sphaeroides wastewater treatment. Microaerobic, 1,000-3,000 lux, and pH 7.0 were optimal conditions for the highest ALA yield of 4.5 ± 0.5 mg/g-biomass. Under these conditions, COD removal and biomass production rate were 93.3 ± 0.9% and 31.8 ± 0.5 mg/l/h, respectively. In addition, trace elements Fe2+, Mg2+, Ni2+, and Zn2+ further improved the ALA yield, COD removal, and biomass production rate. Specifically, the highest ALA yield (12.5 ± 0.6 mg/g-biomass) was achieved with Fe2+ addition.

Estimate of $CH_4$ Emission Factors in Municipal Wastewater Treatment Plants (하수와 소화슬러지의 $CH_4$가스 배출원단위 산정에 관한 연구)

  • Yang, Hyung-Jae;Park, Jung-Min
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.3
    • /
    • pp.39-46
    • /
    • 2008
  • In order to study the estimate of $CH_4$ emission factors in the municipal wastewater treatment plants, the active sludge process, 5-stage process, Denipho process, and SBR process were investigated. When active sludge process, 5-stage process, and Denipho process were used in wastewater treatment plant, the $CH_4$ emission factors were 2.88, 1.61, and 0.57 g-$CH_4/kg$-BOD, respectively. On the other hand, in the case of SBR process, it was 4.14 g-$CH_4/kg$-BOD. These results indicate that SBR process was effective for $CH_4$ emission in municipal wastewater treatment plants. Using the above processes, the methane emission factor and amount of waste water sludge were $4.78m^3/t$ and $12,204,506m^3/yr$, respectively. The remove of BOD was a range of $93.91{\sim}98.63%$.

Diagnosis of Wastewater Treatment Processes through the Wastewater COD Fractionation and Process Simulation I : Wastewater COD Fractionation (유입하수 유기물 분류 및 공정모사를 통한 하수처리공정 진단 I : 유입하수 유기물 분류)

  • Choi, Young-Gyun;Chung, Tai-Hak
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.5
    • /
    • pp.513-520
    • /
    • 2007
  • The simulation programs used for diagnosis and design of activated sludge process require organic fractions in municipal wastewater as the input variables. However, methods for characterizing organic fractions are still under development, and are not standardized. In this study, total COD of municipal wastewater was experimentally subdivided into readily and slowly biodegradable COD as well as soluble and particulate inert COD. The COD fractionation of the three municipal wastewater for one year shows linear relationship between each COD fraction and TCOD concentration with around 100% COD balance. This result means that the COD fraction do not vary very much with time, although the actual influent concentrations vary significantly with time and day. Therefore, the experimentally subdivided COD fractions can be utilized as wastewater specific parameters for the simulation of activated sludge processes.