• Title/Summary/Keyword: Muskingum channel routing

Search Result 17, Processing Time 0.027 seconds

Hydrologic Re-Analysis of Muskingum Channel Routing Method: A Linear Combination of Linear Reservoir and Linear Channel Models (Muskingum 하도추적방법의 수문학적 재해석: 선형저수지모형과 선형하천모형의 선형결합)

  • Yoo, Chul-Sang;Kim, Ha-Young
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.12
    • /
    • pp.1051-1061
    • /
    • 2010
  • This study hydrologically re-analysed the Muskingum channel routing method to represent it as a linear combination of the linear channel model considering only the translation and the linear reservoir model considering only the storage effect. The resulting model becomes a kind of instantaneous unit hydrograph, whose parameters are identical to those of the Muskingum model. That is, the outflow occurs after the routing interval ${\Delta}t$ or concentration time $T_c$, and among the total amount of inflow, the x portion is translated by the linear channel model and the remaining (1-x) portion is routed by the linear reservoir model with the storage coefficient ��$K_c$. The application result of both the Muskingum channel routing method and its corresponding instantaneous unit hydrograph to an imaginary channel showed that these two models are basically identical. This result was also assured by the application to the channel flood routing to the Kumnam and Gongju Station for the discharge from the Daechung Dam.

A Study on the Optimization of Parameters for Muskingum Routing Method (Muskingum 홍수 추적방법의 매개변수 최적화에 관한 연구)

  • Cho, Hyeon-Kyeong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.11 no.1
    • /
    • pp.27-34
    • /
    • 2008
  • This study presents techniques for the estimation of parameters in flood routing method of natural channel.. The Muskingum routing method is the most widely used method of hydrologic stream channel routing. In this paper, Genetic Algorithm and Fletcher-Powell method is applied to determine parameters(K and x) of the Muskingum routing method. The results of the approach shows that Genetic Algorithm method can be one of methods to determine parameters of the Muskingum routing method. Based on the analysis for estimated parameters and the comparison with the results from observed data, the applicability of Genetic Algorithm is verified.

  • PDF

A Channel Flood Routing by Muskingum Method Incorporating Lateral Inflows (측방 유입수를 고려한 자연 하도의 Muskingum 홍수추적)

  • 강인주;윤용남
    • Water for future
    • /
    • v.23 no.3
    • /
    • pp.385-395
    • /
    • 1990
  • Three-parameter Muskingum flood routing model which incorporated the inflows alongside the river channel is applied for the Waegwan-Jeukpogyo reach of the Nakdong River using the flood data of 12 selected flood events experienced in this reach. The flood routing equations for three-parameter model were expressed as a system of finite difference equations and the routing constants were directly computed by matrix inversion method. Then, the three parameters, which consist of the storage constants(K), weighting fator(x), and lateral inflow parameter(α), were determined from the computed routing constants. The results of the present study showed that the model can predict with a fair accuracy the flood discharges at the downsteam end of the reach. The parameters K and x were seen as channel parameters which have close relations with the flood magnitude, whereas the lateral inflow parameter was shown to be strongly governed by the rainfall characteristics of the tributary watersheds contributing to the lateral inflows.

  • PDF

Parameter Decision of Muskingum Channel Routing Method Based on the Linear System Assumption (선형시스템가정에 근거한 Muskingum 하도추적방법의 매개변수 결정)

  • Yoo, Chulsang;Sin, Jiye;Jun, Chang Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.5
    • /
    • pp.449-463
    • /
    • 2013
  • This study proposes the method for determining the Muskingum channel routing model parameters based on the assumption of linear system. The proposed method was applied to the Chungju dam basin for the evaluation. Additionally, the rainfall-runoff was repeated for the Yeongchun-Chungju dam reach using seven rainfall events observed. Summarizing the results is as follows. First, the concentration time and storage coefficient of a channel reach formed by the subdivision can be expressed as the difference between the concentration times and storage coefficients of upstream and downstream basins. The storage coefficients of the channel reach estimated is equal to the storage coefficient of the Muskingum channel routing model and the weight factor can be simply estimated using the ratio between the concentration time and storage coefficient. Second, the weight factor of the Muskingum model is in inverse proportion to the Russel coefficient, which is in between 0.4166 and 0.625 when considering the Russel coefficients generally applied. Finally the application to the Yeongchun-Chungju dam reach showed that the proposed method is still valid regardless of the limitations such as the uncertainty of the observed data.

A Study on Channel Flood Routing Using Nonlinear Regression Equation for the Travel Time (비선형 유하시간 곡선식을 이용한 하도 홍수추적에 관한 연구)

  • Kim, Sang Ho;Lee, Chang Hee
    • Journal of Wetlands Research
    • /
    • v.18 no.2
    • /
    • pp.148-153
    • /
    • 2016
  • Hydraulic and hydrological flood routing methods are commonly used to analyze temporal and spatial flood influences of flood wave through a river reach. Hydrological flood routing method has relatively more simple and reasonable performance accuracy compared to the hydraulic method. Storage constant used in Muskingum method widely applied in hydrological flood routing is very similar to the travel time. Focusing on this point, in this study, we estimate the travel time from HEC-RAS results to estimate storage constant, and develop a non-linear regression equation for the travel time using reach length, channel slope, and discharge. The estimated flow by Muskingum model with storage constant of nonlinear equation is compared with the flow calculated by applying the HEC-RAS 1-D unsteady flow simulation. In addition, this study examines the effect on the weighting factor changes and interval reach divisions; peak discharge increases with the bigger weighting factor, and RMSE decreases with the fragmented division.

Flow Routing in Prismatic Symmetrical Compound Channels by Applications of the Apparent Shear Force (ASF)

  • Chun, Moo-Kap;Jee, Hong-Kee
    • Korean Journal of Hydrosciences
    • /
    • v.8
    • /
    • pp.41-56
    • /
    • 1997
  • A new routing computer model for the symmetric compound channel called the ASRMCS(Apparent Shear Force Muskingum-Cunge Method in Symmetry) has been developed. The Muskingum-Cunge routing method is adapted. The Apparent Shear Force (ASF) between the deep main channel and the shallow floodplan flow is introduced while the flow is routed. The nonlinear parameter method is applied. The temporal and spatial increments are varied according to the flow rate. The adaptation of above schemes is tested against the routed hydrographs using the DAMBRK model. The results of general routing practice of Muskingum-Cunge Method(GPMC) are also compared with those of above two models. The results of the new model match remarkably well with those of DAMBRK. The routed hydrographs show a smooth variation from the inflow boundary condition without any distortions caused by the difference of cross-section shape. However, the results of GPMC, showing early rise and fall of routed hydrograph, have considerable differences from those of the ASFMCS and DAMBRK.

  • PDF

Flood Routing on the River by Revised Muskingum-Cunge Method (하도에서의 홍수추적 -수정 Muskingum-Cunge 방법-)

  • 홍종운
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.21 no.1
    • /
    • pp.13-23
    • /
    • 1979
  • The predictien of a design flood hydrograph at a particular site on a river may be based on the derivation of a discharge or stage hydrograph at an upstream section, together with a method to route this hydrograph along the rest of the river. In order to limit this investigation to cases where the assumption like uniform rainfall may be reasonably valid, the derivation of unit hydrographs has been limited to catchment with an area less than 500 km2. Consequently, flood routing methods provide a useful tool for the analysis of flooding in all but the smaller catchment, particularly where the shape of the hydrograph as well as the peak value is required. The author, therefore, will introduce here a flood routing method on the open channel with a peak discharge of the catchment area concerned. The importance of being able to route floods accurately is also reflected in the large number of flood routing method which have been developed since the year 1900. There are the modified puls method, Steinberg method, Goodrich method, Ekdahl method, Tatum's mean continuously Equation, wisler-Brater method, Muskingum, chung, and Muskingum-cunge (M-C) method and so on. The author will try to introduce a flood routing method which is revised Muskingum-cunge method. In calculating flood routing by the M-C method, whole variable parameters on the river were assumed to almost uniform values from the upstream to the downstream. In the results, the controlled flood rates at the 40km downstream on the river is appeared to decrease 22m$^3$/sec or 12 percent of the peak flood 170m$^3$/sec.

  • PDF

Flow Routing in Prismatic Symmetrical Compound Channels by Applications of Apparent Shear Force (외부전단력 적용에 의한 균일대칭복단면에서의 하도추적)

  • 전무갑;지홍기
    • Water for future
    • /
    • v.29 no.3
    • /
    • pp.217-228
    • /
    • 1996
  • A new routing computer model for the symmetric compound channel called the ASFMCS (Apparent Shear Force Muskingum-Cung Method in Symmetry) is developed. The Muskingum-Cunge routing method is adapted. The Apparent Shear Force(ASF) between the deep main channel and shallow floodplain flow is introduced while the flow is routed. The nonlinear parameter method is applied. The temporal and spatial increments are varied according to the flow rate. The adaptation of above schemes is tested against the routed hydrographs using the DAMBRK model. The results of general routing practice of Muskingum-Cunge Method (GFMC) are also compared with those of the above two models. The results of the new model match remarkably well with those of DAMBRK. The routed hydrographs show smooth variation from the inflow boundary condition without any distortions caused by the difference of cross-section shape. However, the results of GPMC, showing earlier rising and falling of routed hydrograph, have considerable differences from those of the ASFMCS and DAMBRK.

  • PDF

Derivation of Storage Coefficient and Concentration Time for Derivation of Lateral Inflow Hydrograph (측방 유입 수문곡선 유도를 위한 저류상수 및 집중시간의 유도)

  • Yoo, Chul-Sang;Kim, Ha-Young;Park, Chang-Yeol
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.3
    • /
    • pp.243-252
    • /
    • 2012
  • The objective of this study is to analyze lateral inflow hydrologically. The IUH of lateral inflow is sum of the impulse responses of total cells in basin. This IUH bases on the Muskingum channel routing method, which hydrologically re-analysed to represent it as a linear combination of the linear channel model considering only the translation and the linear reservoir model considering only the storage effect. Rectangular and triangular basins were used as imaginary basins and IUH of each basin were derived. The derived IUH have different characteristics with respect to basin's shape. The storage coefficient of lateral inflow was also derived mathematically using general definitions of concentration time and storage coefficient. As a result, the storage coefficient of lateral inflow could be calculated easily using basin's width, length and hydrological characteristics of channel.

A Channel Flood Routing by Muskingum Method Incorporating Lateral Inflows. (측방 유입수량 고려한 자연하도의 Muskingum 홍수추적)

  • 강인주;윤용남
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1990.07a
    • /
    • pp.29-39
    • /
    • 1990
  • 측방유입수가 고려되는 3변수 Muskingum하도추적모형을 낙동강수계중 왜관에서 적포교구간의 12개 홍수사상에 대하여 적용하였고, 기존방법인 2변수 Muskingum방법의 저류상수 K와 가중계수 x에 추가된 $\alpha$는 측방유입수를 고려해주는 변수이다. 3변수모형의 추적방정식은 유한차분 방정식으로 표현되며, 추적상수 결정은 Matrix Inversion에 의하여 직접 계산가능하며, 이로부터 각홍수사상의 K x $\alpha$값을 구할수 있다. 본 연구를 실유역에 적용하여 실측치와 비교하여본 결과 비교적 잘 맞음을 알 수 있었으며, K와 x값은 하도특성인자로서 홍수규모와 관계되고 측방유입인자 $\alpha$는 항특성에 의하여 지배되는 변수로 측방유입량이 클수록 값이 커지는 성향으로 나타났다.

  • PDF