• Title/Summary/Keyword: N-Alkylation

Search Result 59, Processing Time 0.028 seconds

A Theoretical Study on the N-Alkylation of a Pyrimidine with a Cyclopropa[c]inden-5-one; A Model Pharmacophore of Duocarmycins and CC-1065

  • Nahm, Kee-Pyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.1
    • /
    • pp.69-72
    • /
    • 2004
  • The N-alkylation of 4-aminopyrimidine with a tetrahydro-3-aza-cyclopropa[c]inden-5-one, which is a model reaction of the pharmacophore of duocarmycins, was studied with a quantum chemical method. We consider two factors for the acceleration of the N-alkylation; distortion and protonation of the model pharmacophores. The distortion of the spirocyclopropyl moiety in the model spirocyclopropylcyclohexadienone could induce an intrinsic energy of 3-4 kcal/mol, but the protonation on the carbonyl oxygen of the model cyclohexadienone lowers the transition energy of the N-alkylation of 4-aminopyrimidine dramatically (~46 kcal/mol) and is considered to play a major role in the enzyme reaction. The distorted and protonated spirocyclohexadienone is exothermally relieved to a phenol with the heat of reaction of -37 kcal/mol. The protonation process is proposed to be the mode of action of duocarmycins in the DNA alkylation.

Solvent Free N-Heterocyclization of Primary Amines to N-Substituted Azacyclopentanes Using Hydrotalcite as Solid Base Catalyst

  • Dixit, Manish;Mishra, Manish;Joshi, P.A.;Shah, D.O.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1457-1464
    • /
    • 2012
  • An ecofriendly catalytic route for selective synthesis of $N$-substituted azacyclopentanes, nitrogen-containing heterocyclic intermediates for many bioactive compounds, was established by carrying out $N$-heterocyclization (di $N$-alkylation) of primary amines with 1,4-dichloro butane (as dialkylating agent) using catalytic amount of hydrotalcite as solid base catalyst. The hydrotalcite was found to be efficient solid base catalyst for di $N$-alkylation of different primary amines (aniline, benzyl amine, cyclohexyl amine and n-butyl amine) giving 82 to 96% conversion (at optimized reaction condition) of 1,4-dichloro butane and > 99% selectivity of respective $N$-substituted azacyclopentanes within 30 min. under solvent free condition. The reaction parameters significantly influence the conversion of 1,4-dichloro butane to $N$-substituted azacyclopentanes. The nature of substituent present on amino group affects the reactivity of amine substrates for di $N$-alkylation reaction with 1,4-dichloro butane. The 1,4-dichloro butane was found to be highly reactive alkylating agent for di $N$-alkylation of amines as compared to 1,4-dihydroxy butane. The reusability of the catalyst and its chemical stability in the reaction was demonstrated.

Sequence Selectivity of DNA Alkylation by Adozelesin and Carzelesin

  • Yoon, Jung-Hoon;Lee, Chong-Soon
    • Archives of Pharmacal Research
    • /
    • v.21 no.4
    • /
    • pp.385-390
    • /
    • 1998
  • Adozelesin and carzelesin are synthetic analogues of the extremely potent antitumor antibiotic CC-1065, which alkylates N3 of adenine in a consensus sequence $5^1$-(A/T)(A/T)$A^*$ ($A^*$ is the site of alkylation). We have investigated the DNA sequence selectivity of adozelesin and carzelesin by thermally ind ced DNA strand cleavage assay using radiolabeled restriction DNA fragments. An analysis of alkylation patterns shows that the consensus sequences for carzelesin and adozelesin have been found to be $5^1$-(A/T)(A/T)$A^*$ and $5^1$-(A/F)(G/C)(A/T)$A^*$. A new consensus sequence, $5^1$-(A/T)(A/T)$CA^*$, has been observed to display an additional alkylation site for adozelesin but not for carzelesin. These results indicate that the pattern of sequence selectivity induced by carzelesin is similar but not identical to those induced by adozelosin.

  • PDF

An Efficient Synthesis of 2-Alkyl-4-hydroxy-2H-1,2-benzothiazine-3-carboxamide-1,1-dioxides

  • Zia ur Rehman, Muhammad;Choudary, Jamil Anwar;Ahmad, Saeed
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1771-1775
    • /
    • 2005
  • An efficient and environment friendly method has been described for the synthesis of various 2-alkyl-4-hydroxy-2H-1,2-benzothiazine-3-carboxamide-1,1-dioxides starting from N-alkylation of sodium obenzosulfimide in an ionic liquid for the first time. Ring cleavage and ring closure of the resulting product were achieved in a single step in a cost effective solvent (methanol) followed by N-alkylation of resulting alkyl 4-hydroxy-2H-1,2-benzothiazine-3-carboxylate in ionic liquid while boron triflouride was used as a catalyst along with molecular sieves in carboxamide formation step.

Phase Transfer Catalyst (PTC) Catalyzed Alkylations of Glycinamides for Asymmetric Syntheses of $\alpha$-Amino Acid Derivatives

  • Park, Seon Yeong;Kim, Hyeon Ju;Im, Dong Yeol
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.9
    • /
    • pp.958-962
    • /
    • 2001
  • The chiral amine auxiliary mediated stereoselective alkylation reactions of glycinamides 1-6 and 15-17 using phase transfer catalyst (PTC) for liquid-solid extraction are described. The secondary N-(diphenylmethylene) glycinamides 1, 2 and 3 give better selectivities and yields than tertiary N-(diphenylmethylene) glycinamides 4, 5 and 6. Alkylation of the glycinamide 1 and 2 using 18-Crown-6 as a PTC in toluene at $-40^{\circ}C$ gives best selectivities and yields. Alkylations of N-(4-chlorophenylmethylene)glycinamides 15, 16 and 17 under same PTC conditions give $\alpha$, $\alpha-disubstituted$ amino acid derivatives 18, 19 and 20 with low diastereoselectivities.

Synthesis of some pyridinethione derivatives and their biological activity

  • Miky, Jehane A.A.;Zahkoug, Samir A.M.
    • Natural Product Sciences
    • /
    • v.3 no.2
    • /
    • pp.89-99
    • /
    • 1997
  • Aminolysis, hydrazinolysis and alkylation of 4-methoxy and 4,9-dimethoxy-6-cyano-7-thione-5-methyl-7H furo [3,2-g] [1] benzopyridine (1 a-b) yielded 7N-substituted furobenzopyridine derivatives (2 a-e or the possible isomers 3 a-e and 4 a-b), (5 a,b and 6 a,b) and the ester (8 a,b). Hydrolysis of (la) with acetic acid gave the corresponding pyridone derivatives (7). Furobenzopyridinyl-7-thioacetyl hydrazide (9 a,b) have been prepared via alkylation of furobenzopyridine thione (1 a-b) with ethyl chloroacetate followed by condensation with hydrazine hydrate. Schiff base (11) was prepared by reacting (9a) with p. N,N-dimethyl aminobenzaldehyde in boiling ethanol. Treatment of (8a) with anthranilic acid gave the corresponding 7-substituted-4H-3,1-benzoxazine-4-one (10). We found that compound (11) increased bleeding, coagulating time, the total count of white blood cells, blood glucose level (cause hyperglycemia), enzymes (GOT, GPT) activities, concentration of urea and creatinine. On the other hand it decreased red blood cells number, haemoglobin content and haematocrite value.

  • PDF

Highly Enantioselective Synthesis of a-Alkyl-alanines via the Catalytic Phase-Transfer Alkylation of 2-Naphthyl aldimine tert-butyl ester by using O(9)-Allyl-N(1)-2'3'4'-trifluorobenzylhydrocinchoni

  • Jew, Sang-Sup;Lee, Jeong-Hee;Yoo, Mi-Sook;Lee, Yeon-Ju;Jeong, Byeong-Seon;Park, Boon-Saeng;Kim, Myoung-Goo;Park, Hyeung-Geun
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.252.1-252.1
    • /
    • 2003
  • Systematic investigations to develop an efficient enantioselective synthetic method for a-alkyl-alanine by the catalytic phase-transfer alkylation were performed. The alkylation of 2-naphthyl aldimine tert-butyl ester, 1 E with RbOH and O(9)-allyl-N-2'3'4'-trifluorobenzylhydrocinchonidinium bromide, 6, at \ulcorner5 \ulcorner\ulcorner showed the highest enantioselectivities, up to 96% ee.

  • PDF

N-Alkylation of Primary Aromatic Amines Using Alkylhalide and Triethylamine (알킬할라이드와 Triethylamine을 이용한 일급 아로미틱 아민의 N-알킬레이션)

  • Kim, Ju-Hee;Park, Myung-Sook
    • YAKHAK HOEJI
    • /
    • v.49 no.2
    • /
    • pp.162-167
    • /
    • 2005
  • Synthetic method for the selective N-monoalkylation of anilines using alkyl halides and triethylamine under room temperature was described. The corresponding N-alkyl anilines were obtained in good yields with minor quantities of dialkylated products. Anilines 2a-m and 3a-m were identified using NMR and IR. A series of 2a-m and 3a-m has been synthesized from aniline, toluidines, ethylanilines, aminoacetophenones, phenetidines. Formation of anilines was undertaken with dropping of alkylhalides at room temperature in methanol (or ethanol) for 3 hours~5 days. Selectivity on the monoalkylation was relatively high. Synthetic ratio of monoalkylated and dialkylated product was 94 : 6 in case of maximum monoalkylation.

Chiral [Iminophosphoranyl]ferrocenes: Synthesis, Coordination Chemistry, and Catalytic Application

  • Co, Thanh Thien;Shim, Sang-Chul;Cho, Chan-Sik;Kim, Dong-Uk;Kim, Tae-Jeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.9
    • /
    • pp.1359-1365
    • /
    • 2005
  • A series of new chiral [iminophosphoranyl]ferrocenes, {${\eta}^5-C_5H_4-(PPh_2=N-2,6-R_2-C_6H_3)$}Fe{${\eta}^5-C_5H_3-1-PPh^2-2-CH(Me)NMe_2$} (1: R = Me, $^iPr$), {${\eta}^5{-C_5H_4-(PPh_2=N-2,6-R_2}^1-C_6H_3)$}Fe{${\eta}^5-C_5H_3-1-(PPh_2=N-2,6-R_2-C_6H_3)-2-CH(Me)R_2$} (2: $R^1\;=\;Me,\;^iPr;\;R^2\;=\;NMe_2$, OMe), and $({\eta}^5-C_5H_5)Fe${${\eta}^5-C_5H_4-1-PR_2-2-CH(Me)N=PPh_3$} (3:R = Ph, $C_6H_{11}$) have been prepared from the reaction of [1,1'-diphenylphosphino-2-(N,N-dimethylamino) ethyl]ferrocene with arylazides (1 & 2) and the reaction of phosphine dichlorides ($R_3PCl_{2}$) with [1,1'-diphenylphosphino-2-aminoethyl]ferrocene (3), respectively. They form palladium complexes of the type $[Pd(C_3H_5)(L)]BF_4$ (4-6: L = 1-3), where the ligand (L) adopts an ${\eta}^2-N,N\;(2)\;or\;{\eta}^2$-P,N (3) as expected. In the case of 1, a potential terdentate, an ${\eta}^2$-P,N mode is realized with the exclusion of the –=NAr group from the coordination sphere. Complexes 4-6 were employed as catalysts for allylic alkylation of 1,3-diphenylallyl acetate leading to an almost stoichiometric product yield with modest enantiomeric excess (up to 74% ee). Rh(I)-complexes incorporating 1-3 were also prepared in situ for allylic alkylation of cinnamyl acetate as a probe for both regio- and enantioselectivities of the reaction. The reaction exhibited high regiocontrol in favor of a linear achiral isomer regardless of the ligand employed.