• Title/Summary/Keyword: N-Heterocyclic carbene

Search Result 14, Processing Time 0.024 seconds

BIAN N-Heterocyclic Gold Carbene Complexes induced cytotoxicity in human cancer cells via upregulating oxidative stress

  • Farooq, Muhammad;Taha, Nael Abu;Butorac, Rachel R;Evans, Daniel A;Elzatahry, Ahmed A;Wadaan, Mohammad AM;Cowley, Alan H
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.7003-7006
    • /
    • 2015
  • Background: Nanoparticles of gold and silver are offering revolutionary changes in the field of cancer therapy. N-heterocyclic carbene (NHC) metal complexes possess diverse biological activities and are being investigated as potential chemotherapeutic agents. The purpose of this study was to examine the cytotoxicity and possible mechanisms of action of two types of newly synthesized nanofiber composites containing BIAN N-heterocyclic gold carbene complexes in two types of human cancer cells, namely breast cancer (MCF7) and liver cancer (HepG2) cells and also in normal human embryonic kidney cells (HEK 293). Materials and Methods: Cytotoxicity was assessed by MTT cell viability assay and oxidative stress by checking the total glutathione level. Results: Both compounds affected the cell survival of the tested cell lines at very low concentrations (IC50 values in the micro molar range) as compared to a well-known anti-cancer drug, 5 fluorouracil. A 60-80% depletion in total glutathione level was detected in treated cells. Conclusions: Reduction in total glutathione level is one of the biochemical pathways for the induction of oxidative stress which in turn could be a possible mechanism of action by which these compounds induce cytotoxicity in cancer cell lines. The in vitro toxicity towards cancer cells found here means that these molecules could be potential anticancer candidates.

Density Functional Study on [3+2]-Dipolar Cycloaddition Reaction of the N-heterocyclic Carbene Boryl Azide with Olefins

  • Zhang, Xing-Hui;Wang, Ke-Tai;Niu, Teng;Li, Shan-Shan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1403-1408
    • /
    • 2014
  • The cycloaddition reactions of the N-heterocyclic carbene boryl azide with methyl acrylate, butenone, and hexafluoropropene have been investigated theoretically. Solvent effects on these reactions have been explored by calculation that included a polarizable continuum model (PCM) for the solvent (C6H6). The title reaction could produce 4- and 5-substituted 1,2,3-triazolines, respectively. The reaction systems have the higher chemical reactivity with the low barriers and could be favored. Yet the smaller differences have been found to occur in energetics, and the cycloaddition reactions occur for s-trans conformations over s-cis conformations. The calculations indicated that the cycloaddition reaction of the alkenes have certain regioselectivity.

Novel Synthesis of 3-Phenyl-chromen-4-ones Using N-Heterocyclic Carbene as Organocatalyst: An Efficient Domino Catalysis Type Approach

  • Mishra, Priya;Singh, Sarita;Ankit, Preyas;Fatma, Shahin;Singh, Divya;Singh, Jagdamba
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1070-1076
    • /
    • 2013
  • Herein is reported a simple and efficient synthesis of isoflavones starting from various substituted phenacyl bromides and salicylaldehydes in presence of NHC. The mechanism involved domino catalysis type approach with consumption and regeneration of catalyst in two catalytic cycles. This method proved to be very lucrative and gives very good yield. The method described here represents an environmentally benign alternative to classical approach.

Synthesis of Terphenyls and Quaterphenyls via the Nickel N-Heterocyclic Carbene-Catalyzed Cross-Coupling of Neopentyl Arenesulfonates with Aryl Grignard Reagents

  • Jo, Hyun-Jong;Kim, Chul-Bae;Ryoo, Tae-Yong;Ahn, Bo-Kyoung;Park, Kwang-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3749-3754
    • /
    • 2010
  • Various terphenyl and quaterphenyl derivatives were prepared by the Ni-NHC catalyzed cross coupling of the corresponding biphenyl- and terphenyl-sulfonates with arylmagnesium bromides. The reactions proceeded rapidly via a nucleophilic aromatic substitution of the alkoxysulfonyl moieties by the aryl nucleophiles to afford high yields within just 1.5 h at room temperature in spite of the low reactivity of the sulfur electrophiles.