• Title/Summary/Keyword: N-body simulations

Search Result 83, Processing Time 0.034 seconds

Large-scale Structure Studies with Mock Galaxy Sample from the Horizon Run 4 & Multiverse Simulations

  • Hong, Sungwook E.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.29.3-29.3
    • /
    • 2020
  • Cosmology is a study to understand the origin, fundamental property, and evolution of the universe. Nowadays, many observational data of galaxies have become available, and one needs large-volume numerical simulations with good quality of the spatial distribution for a fair comparison with observation data. On the other hand, since galaxies' evolution is affected by both gravitational and baryonic effects, it is nontrivial to populate galaxies only by N-body simulations. However, full hydrodynamic simulations with large volume are computationally costly. Therefore, alternative galaxy assignment methods to N-body simulations are necessary for successful cosmological studies. In this talk, I would like to introduce the MBP-galaxy abundance matching. This novel galaxy assignment method agrees with the spatial distribution of observed galaxies between 0.1Mpc ~ 100Mpc scales. I also would like to introduce mock galaxy catalogs of the Horizon Run 4 and Multiverse simulations, large-volume cosmological N-body simulations done by the Korean community. Finally, I would like to introduce some recent works with those mock galaxies used to understand our universe better.

  • PDF

GRAPE AND PROJECT MILKYWAY

  • MAKINO JUNICHIRO
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.165-168
    • /
    • 2005
  • We overview the GRAPE (GRAvity piPE) project. The goal of the GRAPE project is to accelerate the astrophysical N-body simulations. Since almost all computing time is spent for the evaluation of the gravitational force between particles, we can greatly accelerate many N-body simulations by developing a specialized hardware for the force calculation. In 1989, the first such hardware, GRAPE-1, was completed, with the peak speed of 120 Mflops. In 2003, GRAPE-6 was completed, with the peak speed of 64 Tflops, which is nearly 106 times faster than GRAPE-l and was the fastest computer at that time. In this paper, we review the basic concept of the GRAPE hardwares, the history of the GRAPE project, and two ongoing projects, GRAPE-DR and Project Milkyway.

Numerical simulations of rotating star clusters with 2 mass components

  • Hong, Jong-Suk;Kim, Eun-Hyeuk;Lee, Hyung-Mok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.56.1-56.1
    • /
    • 2011
  • To understand the effect of the initial rotation for tidally bounded clusters with mass spectrum, we performed N-body simulations for the clusters with different degrees of initial rotation and compared to Fokker-Planck results. We confirmed that the cluster evolution is accelerated by the initial rotation as well as the mass spectrum. For the slowly rotating models, the time evolution of mass, energy and angular momentum show good agreements between N-body and Fokker-Planck calculations. On the other hand, for the rapidly rotating models, there are significant differences between two approaches at the beginning of the evolution. By investigating cluster shapes, we concluded that these differences are mainly due to secular instability that takes place for very rapidly rotating clusters. The shape of cluster for N-body simulations becomes tri-axial or even prolate, while the 2-dimensional Fokker-Planck simulation can treat only oblate type axisymmetric systems. We also founded that there is the angular momentum exchange from high mass to low mass.

  • PDF

THE NEW HORIZON RUN COSMOLOGICAL N-BODY SIMULATIONS

  • Kim, Ju-Han;Park, Chang-Bom;Rossi, Graziano;Lee, Sang-Min;Gott, J. Richard III
    • Journal of The Korean Astronomical Society
    • /
    • v.44 no.6
    • /
    • pp.217-234
    • /
    • 2011
  • We present two large cosmological N-body simulations, called Horizon Run 2 (HR2) and Horizon Run 3 (HR3), made using $6000^3$ = 216 billions and $7210^3$ = 374 billion particles, spanning a volume of $(7.200\;h^{-1}Gpc)^3$ and $(10.815\;h^{-1}Gpc)^3$, respectively. These simulations improve on our previous Horizon Run 1 (HR1) up to a factor of 4.4 in volume, and range from 2600 to over 8800 times the volume of the Millennium Run. In addition, they achieve a considerably finer mass resolution, down to $1.25{\times}10^{11}h^{-1}M_{\odot}$, allowing to resolve galaxy-size halos with mean particle separations of $1.2h^{-1}$Mpc and $1.5h^{-1}$Mpc, respectively. We have measured the power spectrum, correlation function, mass function and basic halo properties with percent level accuracy, and verified that they correctly reproduce the CDM theoretical expectations, in excellent agreement with linear perturbation theory. Our unprecedentedly large-volume N-body simulations can be used for a variety of studies in cosmology and astrophysics, ranging from large-scale structure topology, baryon acoustic oscillations, dark energy and the characterization of the expansion history of the Universe, till galaxy formation science - in connection with the new SDSS-III. To this end, we made a total of 35 all-sky mock surveys along the past light cone out to z = 0.7 (8 from the HR2 and 27 from the HR3), to simulate the BOSS geometry. The simulations and mock surveys are already publicly available at http://astro.kias.re.kr/Horizon-Run23/.

Effects of the Initial Conditions on Cosmological N-body Simulations

  • L'Huillier, Benjamin;Park, Changbom;Kim, Juhan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.57.2-57.2
    • /
    • 2013
  • Cosmology is entering an era of percent precision with large surveys, demanding accurate simulations. In this paper, we aim to study the effects of initial conditions on the results of cosmological simulations, which will help us to make percent-level accuracy simulations. For this purpose, we use a series of cosmological N-body simulations with varying initial conditions. We test the influence of the initial conditions, namely the pre-initial configuration (preIC), the order of the perturbation theory, and the initial redshift, on the statistics associated with the large scale structures of the universe such as the halo mass function, the density power spectrum, and the maximal extent of the large scale structures. We find that glass or grid pre-initial conditions give similar results. However, the order of the Lagrangian perturbation theory used to generate the initial conditions and the starting epoch of the simulations play a crucial role, especially at high redshift (z ~ 2-4). The initial conditions have to be chosen with care, taking into account the specificity of the simulation.

  • PDF

Cosmological N-body simulations for Intracluster Light using the Galaxy Repacement Technique

  • Chun, Kyungwon;Shin, Jihye;Smith, Rory;Ko, Jongwan;Yoo, Jaewon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.29.2-29.2
    • /
    • 2021
  • Intracluster light (ICL) is composed of the stars diffused throughout the galaxy cluster but does not bound to any galaxy. The ICL is a ubiquitous feature of galaxy clusters and occupies a significant fraction of the total stellar mass in the cluster. Therefore, the ICL components are believed to help understand the formation and evolution of the clusters. However, in the numerical study, one needs to perform the high-resolution cosmological hydrodynamic simulations, which require an expensive calculation, to trace these low-surface brightness structures (LSB). Here, we introduce the Galaxy Replacement Technique (GRT) that focuses on implementing the gravitational evolution of the diffused ICL structures without the expensive baryonic physics. The GRT reproduces the ICL structures by a multi-resolution cosmological N-body re-simulation using a full merger tree of the cluster from a low-resolution DM-only cosmological simulation and an abundance matching model. Using the GRT, we show the preliminary results about the evolution of the ICL in the on-going simulations for the various clusters.

  • PDF

DYNAMICAL EVOLUTION OF ROTATING SINGLE-MASS STELLAR CLUSTER

  • ARDI ELIANI;SPURZEM RAINER;MINESHIGE SHIN
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.207-210
    • /
    • 2005
  • We study the influence of rotation on the dynamical evolution of collisional single-mass stellar clusters up to core-collapse by using N-body simulations. Rotating King models which are characterized by dimensionless central potential parameter $W_o$ and the rotation parameter $W_o$ are used as initial models. Our results show that inner shells slowly contract until core-collapse phase is reached, followed by a slow expansion. Angular momentum is transported outward, while the core is rotating even faster than before, as predicted by gravogyro catastrophe theory. We confirm that rotation plays an important role in accelerating the dynamical evolution of stellar cluster, in particular in accelerating the core collapse.