• Title/Summary/Keyword: NACA 0015

Search Result 28, Processing Time 0.03 seconds

Effect of the Gurney Flap on NACA 0015 Airfoil (NACA 0015 익형에 대한 Gurney 플랩의 영향)

  • Yoo, Neung-Soo;Lee, Jang-Ho
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.71-76
    • /
    • 2000
  • A numerical investigation was performed to determine the effect of the Gurney flap on NACA 0015 airfoil. A Navier-Stokes code. FLUENT, was used to calculate the flow field about the airfoil. The fully-turbulent results were obtained using the standard ${\kappa}-{\varepsilon}$ two-equation turbulence model. The numerical solutions showed the Gurney flap increased both lift and drag. These results suggested that the Gurney flap served to increase the effective camber of the airfoil. Gurney flap provided a significant increase in lift-to-drag ratio relatively at low angle of attack and for high lift coefficient. It turned out that 0.75% chord size of flap was best. The numerical results exhibited detailed flow structures at the trailing edge and provided a possible explanation for the increased aerodynamic performance.

  • PDF

Numerical Study about the Effect of Continuous Blowing On Aerodynamic Characteristics of NACA 0015 Airfoil (연속적 블로잉에 따른 NACA 0015 익형 공력특성 변화에 대한 수치적 연구)

  • Choe, Seong-Yun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.5
    • /
    • pp.1-11
    • /
    • 2006
  • The effects of continuous blowing on flow control and stall suppression for flows over a NACA 0015 airfoil at low Reynolds numbers were numerically investigated through its parameter variation on unstructured meshes. The aerodynamic force and moment variations due to flow control were examined, along with the stall angle-of-attack change for stall suppression. The results showed that blowing with relatively strong jet increases lift at the cost of drag increment below stall angle. Continuous blowing delays flow stall when it is implemented near the leading edge. When the blowing jet was aligned along the flow direction on the airfoil, the favorable flow control effect was most significant below the stall angle of attack.

Aerodynamic Characteristics and Wing Tip Vortex Behavior of Three-Dimensional Symmetric Wing According to Heights (대칭단면을 갖는 3 차원 날개의 지면고도에 따른 공력특성과 끝단와 거동)

  • Yoo, Younghyun;Lee, Sanghwan;Lee, Juhee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.12
    • /
    • pp.1161-1169
    • /
    • 2012
  • A numerical study has been conducted to investigate the aerodynamic characteristics and behavior of a wing-tip vortex around a three-dimensional symmetric wing (NACA0015) in the vicinity of the ground. The aerodynamic characteristics and the wing-tip vortex change as a wing approaches the ground as a result of two different phenomena: the ground effect and the Venturi effect. The ground effect increases lift and decreases drag whereas the Venturi effect generates negative lift and increases drag suddenly. A symmetric airfoil experiences both phenomena with respect to changes in the angle of attack. In the case of a NACA0015 airfoil, the Venturi effect is dominant at small angles of attack but the ground effect is dominant at large angles of attack. Interestingly, both phenomena can be observed at the 4 degree of angle of attack. The vortex core moves inside a wing when the wing experiences the Venturi effect, whereas the vortex core moves outward when the wing experiences the ground effect.

Feedback Flow Control Using Artificial Neural Network for Pressure Drag Reduction on the NACA0015 Airfoil (NACA0015 익형의 압력항력 감소를 위한 인공신경망 기반의 피드백 유동 제어)

  • Baek, Ji-Hye;Park, Soo-Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.9
    • /
    • pp.729-738
    • /
    • 2021
  • Feedback flow control using an artificial neural network was numerically investigated for NACA0015 Airfoil to suppress flow separation on an airfoil. In order to achieve goal of flow control which is aimed to reduce the size of separation on the airfoil, Blowing&Suction actuator was implemented near the separation point. In the system modeling step, the proper orthogonal decomposition was applied to the pressure field. Then, some POD modes that are necessary for flow control are extracted to analyze the unsteady characteristics. NARX neural network based on decomposed modes are trained to represent the flow dynamics and finally operated in the feedback control loop. Predicted control signal was numerically applied on CFD simulation so that control effect was analyzed through comparing the characteristic of aerodynamic force and spatial modes depending on the presence of the control. The feedback control showed effectiveness in pressure drag reduction up to 29%. Numerical results confirm that the effect is due to dramatic pressure recovery around the trailing edge of the airfoil.

A Basis Study on Optimum Design of Turbine for Wind Power Generation(II) (풍력발전용 터빈의 최적설계에 관한 기초 연구(II))

  • 김정환;김범석;김춘식;김진구;이영호
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.58-62
    • /
    • 2001
  • A numerical investigation was performed to determine the effect of airfoil on the optimum flap. height using NACA 0006, 0009, 0012, 0015, 0018, 0021 and 0024 airfoils. The six flaps which have 0.5% chord height difference were used. A Navier-Stokes code, FLUENT, was used to calculate the flow field of the airfoil. The code was first tested as a benchmark by modelling flow around a NACA 4412 airfoil. Predictions of local pressure coefficients are found to be in good agreement with the result of the experimental result. For every NACA 00XX airfoil, flap heights ranging from 0.0% to 2.5% chord were changed by 0.5% chord interval and their effects were also studied. Representative results from each case are presented graphically and discussed. It is concluded that this initial approach gives a promise for the future development of wind turbine optimum design.

  • PDF

Numerical Analysis on Performance Improvement for Wind Blade by the Groove (Groove를 활용한 풍력블레이드 성능향상을 위한 수치적 연구)

  • Hong, Cheol-Hyun;Seo, Seong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.475-482
    • /
    • 2011
  • This study, a basic study to improve aerodynamic characteristic of a wind blade, explored through CFD how much the lift to drag ratio improves according to the shape of groove formed on the surface of airfoil NACA0015. This study found out that the ratio improves by 8.7% when the ratio between boundary layer(${\delta}$) and the depth of groove(h), the ratio between the depth of groove(h) and the width of groove(d) and the ratio between the length(p) from one groove to the other and the width of groove are 1.1, 0.1 and 1.2 respectively. The number of grooves is two. It was also confirmed that the improvement of the lift to drag ratio is maintained after certain angle of attack.

Effect of Airfoil Thickness on the Optimum Gurney Flap Height (최적 Gurney 플랩크기에 대한 익형두께의 영향)

  • Yoo, Neung-Soo;Lee, Jang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.568-572
    • /
    • 2000
  • A numerical investigation was performed to determine the effect of airfoil thickness on the optimum Gurney flap height using NACA 00XX series airfoils. Seven airfoils which have 3% chord thickness difference were used. These were NACA 0006, 0009, 0012, 0015, 0018, 0021, and 0024. A Navier-Stokes code, FLUENT, was used to calculate the flow field about airfoil. The fully turbulent results were obtained using the standard $k-{\varepsilon}$ two-equation turbulence model. To provide a check case fur our computational method, numerical studies for NACA 4412 airfoil were made and compared with already existing experimental data for this airfoil by Wadcock. For every NACA 00XX airfoil, Gurney flap heights ranging from 0.5% to 2.0% chord were changed by 0.5% chord interval and their effects were studied. With the numerical solutions, the relationship between $(L/D)_{max}$ and airfoil thickness as a function of flap height and the relationship between $(L/D)_{max}$ and flap height as a function of airfoil thickness were investigated. The same relationship for $(C_l)_{max}$ also were shown. From these results, the optimum flap size for each airfoil thickness can be determined and vice versa.

  • PDF

A Study on the Flow characteristics of Wells Turbine for Wave Power Conversion by Various Flap Shape (파력발전용 웰즈터빈의 Flap형상변화에 따른 유동 특성에 관한 연구)

  • Kim, Dong-Kyun;Choi, Gab-Song;Kim, Jeong-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.2
    • /
    • pp.1-7
    • /
    • 2006
  • A numerical investigation was performed to determine the effect of airfoil on the optimum flap height using NACA0015 Wells turbine. The five double flaps which have 0.5% difference were selected. A Navier-Stokes code, CFX-TASCflow, was used to calculate the flow field of the Wells turbine. The basic feature of the Wells turbine is that even though the cyclic airflow produces oscillating axial forces on the airfoil blades, the tangential force on the rotor is always in the same direction. Geometry used to define the three dimension numerical grid is based upon that of an experimental test rig. This paper tries to disign the double flap of Wells turbine with the numerical analysis.

A Study on the Design of Wells Turbine for Wave Power Conversion by Various Flap Shape (1) (플랩현상 변화에 따른 파력발전용 웰즈터빈의 형상설계에 관한 연구(1))

  • Kim D.K.;Kim J.H.;Choi Y,H.;Bae S.T.;Lee Y.W.;Lee Y.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.3
    • /
    • pp.253-259
    • /
    • 2004
  • A numerical investigation was performed to determine the effect of airfoil on the optimum flap height using NACA0015 Wells turbine. The five double flaps which have 0.5% difference were selected. A Navier-Stokes code, CFX-TASCflow, was used to calculate the flow field of the Wells turbine. The basic feature of the Wells turbine is that even though the cyclic airflow produces oscillating axial forces on the airfoil blades, the tangential force on the rotor is always in the same direction. Geometry used to define the three dimension numerical grid is based upon that of an experimental test rig. This paper tries In optimized disign the double flap of Wells turbine with the numerical analysis.

The Improvement of Aerodynamic Performance of Flapping-Airfoil Using Thickness Variation Airfoil (두께 변화가 있는 익형을 이용한 flapping-Airfoil의 공력성능 개선)

  • Lee Jung Sang;Kim Chongam;Rho Oh Hyun
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.787-790
    • /
    • 2002
  • In this work, numerical experiments ave conducted to find out the optimal shape of flapping-airfoil using thickness variation airfoils. In the previous study of flapping-airfoil, we had found that the thrust efficiency of thicker airfoil is better than thinner one, but the latter has higher thrust coefficient. Therefore, we have combined thin(NACA0009) and thick(NACA0015)airfoil to overcome these demerits of each airfoil. Using this combined airfoil, we can achieve acceptable aerodynamic performances from thrust efficiency and coefficient points of view. In order to computational study, we have used parallel-implemented incompressible Wavier-Stokes solver. Computational results show how to design leading and trailing edge shapes.

  • PDF