• Title/Summary/Keyword: NCO index

Search Result 11, Processing Time 0.031 seconds

Effect of NCO Index on the Particle Size of Polycarbonate Diol-based Polyurethane Dispersion

  • Kim, Dong-Eun;Kang, Seung-Oh;Lee, Sang-Ho
    • Elastomers and Composites
    • /
    • v.55 no.1
    • /
    • pp.20-25
    • /
    • 2020
  • The effect of the isocyanate index (NCO index) on the particle size and particle size distribution of a waterborne polyurethane dispersion (WPUD) with polycarbonate-diol was determined. The WPUDs were prepared using a conventional acetone process with polycarbonate-polyol (Mn = 2028), 4,4'-methylenebis(cyclohexyl isocyanate) (H12MDI), 2,2-bis(hydroxymethyl) propionic acid (DMPA), and dibutyltin dilaurate catalyst. At NCO index values below 1.5, the number average particle diameter of the WPUDs significantly increased with the NCO index, whereas the particle diameter slightly varied at higher NCO indexes. The dependency of the WPUD viscosity on the NCO index exhibited similar behavior to that of the particle size. The relative values of the full width at half maximum of the WPUD particle distribution curves at various NCO indexes were not influenced by the NCO index.

Study on the Change of Physical Properties in Polyurethane Foam by NCO index at the Aging Condition (NCO index에 따른 폴리우레탄 폼의 노화 물성변화 연구)

  • Kim, Kwangin;Kim, Sangbum
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.115-122
    • /
    • 2012
  • Polyurethane foams were synthesized with different contents and kinds of catalysts to know change of properties under various NCO index. UTM(universal testing machine), DSC(differential scanning calorimetry), SEM(scanning electron microscope) and FT-IR(Fourier transform spectroscopy) were used for studying the PUF's physical properties change. Compressive strength of PUF increased with increasing contents of catalyst. Glass transition temperature(Tg) and compressive strength of PUF using PC-8 and 33LV catalyst, increased with increasing NCO index at the aging. According to the results of Infrared spectral analysis, reduction of NCO peak was found in gelling catalyst, because unreacted NCO reacted with polyurethane. Although Tg and compressive strength of PUF using TMR-2, unchanged with increasing NCO index at the aging, because trimerization of isocyanate.

Effect of Change in Water Content and NCO Index on the Static Comfort of Polyurethane Seat Foam Pad for Automobiles (물 함량과 NCO Index 변화가 자동차용 폴리우레탄 시트 폼 패드의 정적 안락감에 미치는 영향 고찰)

  • Lee, Byoung Jun;Lee, Sung Hoon;Choi, Kwon Yong;Kim, Sang-bum
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.57-63
    • /
    • 2017
  • In this study, we identified how the water content change in various NCO index affects the static comfort of polyurethane seat foam pad for automobiles. In order to identify factors that affect the static comfort, a static load test was performed using UTM to plot a hysteresis curve. The hardness of the foam when it was modified by 25, 65%, hysteresis loop area, hysteresis loss (%), and Sag factor were also obtained. By measuring the swelling ratio, it was confirmed that, as the water content increased in a fixed NCO index, the hardness and crosslinking density increased while the restoring force decreased due to the increase of urea bond. Also the Sag factor decreased due to the increase of surface hardness. As the NCO index increased in a fixed water content, the urethane and urea bond reacted more with isocyanate, leading to an increase in hardness and decrease in restoring force.

Effect of Polyethylene Glycol Molecular Weight and NCO Index on Properties of the Hydrophilic Reactive Hotmelt Polyurethane Adhesives (Polyethylene Glycol의 분자량 및 NCO index의 변화에 따른 Hydrophilic Reactive Hotmelt Polyurethane의 물성 변화)

  • Han, Young Chul;Kim, Dack Han;Oh, Kyung Seok;Shin, Hyeon Jeong;Yang, Jeong Han;Jeong, Han Mo
    • Textile Coloration and Finishing
    • /
    • v.30 no.2
    • /
    • pp.90-97
    • /
    • 2018
  • Hydrophilic reactive hot-melt polyurethane adhesive(HRHA) using a hydrophilic polyol having different molecular weight and NCO index was synthesized. This HRHA was synthesized using Polyethylene glycol(PEG) as a hydrophilic polyol, Polypropylene glycol(PPG) and Polycaprolactone diol(PCL) as hydrophobic polyols, and Methylene diphenyl diisocyanate(MDI) as an isocyanate. The changes in IR spectrum, viscosity and thermal properties of HRHA with different PEG molecular weights and NCO index were investigated, and the tensile strength and elongation of the HRHA casting film and the peel strength, moisture permeability and water pressure of the HRHA coated fabric were confirmed. In this experiment, as the molecular weight of PEG and NCO index increased, the adhesive strength, tensile strength, elongation and moisture permeability was increased but viscosity and Tg was decreased.

Pot Life Assessment and Mechanical Property of Fast Curing Polyurethane Developed with Eco-friendly Pre-polymer

  • Joseph, Jessy;Moon, Junho;Kong, Tae Woong;Kim, Dong Ho;Oh, Jeong Seok
    • Elastomers and Composites
    • /
    • v.55 no.1
    • /
    • pp.13-19
    • /
    • 2020
  • 4,4'-Methylenebis(2-chlorobenzenamine) (MOCA)-free fast curing polyurethanes were prepared. In this study, the processibility of a fast curing polyurethane system was characterized by assessing the pot life. The obtained pot life of the polyurethane was 6-8 s, indicating that this prepolymer-curative system is appropriate for ribbon flow casting. The influence of the NCO index on the viscosity and mechanical properties was evaluated. The viscosity, tensile strength, tear strength, and hardness of the as-prepared polyurethanes showed an increasing trend, with an increase in the NCO index, whereas the elongation at break increased initially and then decreased with an increase in the NCO index. The gel fraction and crosslink density showed a direct correlation with the NCO index, which substantiated the improved mechanical properties at the higher NCO index. The coefficients of friction and abrasion deteriorated with an increase in the NCO index.

Effect of Catalyst Type and NCO Index on the Synthesis and Thermal Properties of Poly(urethane-isocyanurate) Foams

  • Shin, Hye-Kyeong;Lee, Sang-Ho
    • Elastomers and Composites
    • /
    • v.53 no.2
    • /
    • pp.86-94
    • /
    • 2018
  • The effect of the NCO index and catalyst type on the thermal stability of poly(urethane-isocyanurate) (PUIR) foams was investigated to identify a method for enhancing the flame resistance of PUIR. PUIR foams were prepared using 4,4-diphenylmethane diisocyanate (MDI) and [(diethylene glycol)adipate]diol, which were synthesized by esterification of adipic acid and diethylene glycol. Dabco K-15, Dabco TMR-30, and Toyocat RX-5 were used as the catalysts for trimerization and gelation. The amount of urea and isocyanurate groups in PUIR was semi-quantitatively determined by normalizing their absorbance with the phenyl absorbance measured by FT-IR. The normalization data showed that Dabco TMR-30 effectively generated isocyanurate groups in PUIR. As a result, Dabco TMR-30 effectively raised the decomposition temperature and increased the 800 K and 900 K residues of the PUIR foam synthesized with an NCO index of 200.

Effects of Isocyanate Index and Aging on the Physical Properties of Polyurethane Foams (폴리우레탄 발포체의 물성에 대한 이소시아네이트 인덱스와 노화의 영향)

  • Kwon Hyun;Kim Sang-Bum;Kim Youn Cheol
    • Polymer(Korea)
    • /
    • v.29 no.5
    • /
    • pp.457-462
    • /
    • 2005
  • Polyurethane foams (PUFs) were prepared from polymeric 4,4'-diphenylmethane diisocyanate (PMDI), mixed polyol with OH value of 480, silicone surfactant, three catalysts, and hydrofluorocarbon(HFC) as blowing agent. Balance (PC-8), gelling (33LV), and trimerization (TMR-2) catalysts were used. The effect of the catalysts on the physical properties of PUF with increase of isocyanate (NCO) index and aging time was investigated. The cell size of the PUF with PC-8 and 33LV slightly increased with an increase in NCO index from 100 to 170 but compressive strength did not change significantly. In case of trimerization catalyst, the compressive strength of PUF increased from 8.75 to 1$10.5 kg_f/cm^2$ and the cell size decreased with an increase in NCO index. The compressive strength of the PUF with 33LV increased from 9.21 to $10.15 kg_f/cm^2$ with an increase in aging time. However, there was no detectable change in the compressive strength of PUF with TMR-2. A possible interpretation of the results includes an additional cross-link reaction of non-reacted MDI and FTIR spectrum illustrated the change of NCO peak.

Effect of Polyester Polyol and NCO Index to the Physical Properties of Polyurethane Adhesives in Cryogenic and Room Temperature (폴리올의 구조와 NCO Index에 따른 폴리우레탄 접착제의 상온과 초저온에서의 물성 변화)

  • Kim, Sang-Bum;Cho, Il-Sung;Kang, Sung-Gu
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.3
    • /
    • pp.38-42
    • /
    • 2008
  • Effect of polyol structure and NCO index on adhesion of PU adhesive at room ($25^{\circ}C$) and extremely low temperature ($-190^{\circ}C$) was investigated. At room temperature adhesive strength of PU adhesive tends to decrease as molecular weight of polyol increases, however, the strength at $-190^{\circ}C$ shows opposite tendency. Adhesive strength of the PU turned out to be directly proportional to the amount of MDI. PU containing aliphatic polyol was higher in shear strength at $-190^{\circ}C$ and the strength of PU with aromatic polyol was higher at room temperature.

  • PDF

Effect of Isocyanate Index on the Physical Properties of Rigid Polyurethane Foam under Sea Water (해수에서 이소시아네이트 인덱스 변화가 경질폴리우레탄 폼의 물성에 미치는 영향)

  • Kang, Sungkoo;Cho, Ilsung;Kim, Sangbum
    • Applied Chemistry for Engineering
    • /
    • v.19 no.4
    • /
    • pp.427-431
    • /
    • 2008
  • The rigid polyurethane foams (PUF) were prepared using polyols with 90, 110, 130, and 150 isocyanate index. The effect of sea water on the physical properties of PUF with the increase in isocyanate (NCO) index and ageing time was investigated. Tensile strengths and compressive strengths of the PUFs decreased up to 10% and 7% with an increase in ageing time, respectively. Cell morphology of the PUF under sea water was turned out to be the same as that in the ambient condition. It was observed that $T_g$ and tensile modulus of the PUF under sea water increased. The results showed an additional cross-link reaction of non-reacted MDI and the change of NCO peak as observed from FT-IR spectrum.