• Title/Summary/Keyword: NHDFs

Search Result 5, Processing Time 0.018 seconds

Lactobacillus sakei Lipoteichoic Acid Inhibits MMP-1 Induced by UVA in Normal Dermal Fibroblasts of Human

  • You, Ga-Eun;Jung, Bong-Jun;Kim, Hye-Rim;Kim, Han-Geun;Kim, Tae-Rahk;Chung, Dae-Kyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.10
    • /
    • pp.1357-1364
    • /
    • 2013
  • Human skin is continuously exposed to ultraviolet (UV)-induced photoaging. UVA increases the activity of MMP-1 in dermal fibroblasts through mitogen-activated protein kinase (MAPK), p38, signaling. The irradiation of keratinocytes by UVA results in the secretion of the inflammatory cytokine, tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), and the stimulation of MMP-1 in normal human dermal fibroblasts (NHDFs). Lipoteichoic acid (LTA) is a component of the cell wall of gram-positive Lactobacillus spp. of bacteria. LTA is well known as an anti-inflammation molecule. LTA of the bacterium Lactobacillus plantarum has an anti-photoaging effect, but the potential anti-photoaging effect of the other bacteria has not been examined to date. The current study showed that L. sakei LTA (sLTA) has an immune modulating effect in human monocyte cells. Our object was whether inhibitory effects of sLTA on MMP-1 are caused from reducing the MAPK signal in NHDFs. It inhibits MMP-1 and MAPK signaling induced by UVA in NHDFs. We also confirmed effects of sLTA suppressing TNF-${\alpha}$ inducing MMP-1 in NHDFs.

Extract of Ettlia sp. YC001 Exerts Photoprotective Effects against UVB Irradiation in Normal Human Dermal Fibroblasts

  • Lee, Jeong-Ju;An, Sungkwan;Kim, Ki Bbeum;Heo, Jina;Cho, Dae-Hyun;Oh, Hee-Mock;Kim, Hee-Sik;Bae, Seunghee
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.4
    • /
    • pp.775-783
    • /
    • 2016
  • The identification of novel reagents that exert a biological ultraviolet (UV)-protective effect in skin cells represents an important strategy for preventing UV-induced skin aging. To this end, we investigated the potential protective effects of Ettlia sp. YC001 extracts against UV-induced cellular damage in normal human dermal fibroblasts (NHDFs). We generated four different extracts from Ettlia sp. YC001, and found that they exhibit low cytotoxicity in NHDFs. The ethyl acetate extract of Ettlia sp. YC001 markedly decreased UVB-induced cytotoxicity. Additionally, the ethyl acetate extract significantly inhibited the production of hydrogen peroxide-induced reactive oxygen species. Moreover, it inhibited UVB-induced thymine dimers, as confirmed by luciferase assay and thymine dimer dot-blot assay. Thus, the study findings suggest Ettlia sp. YC001 extract as a novel photoprotective reagent on UVB-induced cell dysfunctions in NHDFs.

Protection of Skin Fibroblasts from Infrared-A-Induced Photo-Damage Using Ginsenoside Rg3(S)-Incorporated Soybean Lecithin Liposomes

  • Won Ho Jung;Jihyeon Song;Gayeon You;Jun Hyuk Lee;Sin Won Lee;Joong-Hoon Ahn;Hyejung Mok
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.135-141
    • /
    • 2023
  • Protection of skin cells from chronic infrared-A (IRA) irradiation is crucial for anti-photoaging of the skin. In this study, we investigated the protective activity of Rg3(S) and Rg3(S)-incorporated anionic soybean lecithin liposomes (Rg3/Lipo) with a size of approximately 150 nm against IRA-induced photodamage in human fibroblasts. The formulated Rg3/Lipo showed increased solubility in aqueous solution up to a concentration of 200 ㎍/ml, compared to free Rg3(S). In addition, Rg3/Lipo exhibited superior colloidal stability in aqueous solutions and biocompatibility for normal human dermal fibroblasts (NHDFs). After repeated IRA irradiation on NHDFs, elevated levels of cellular and mitochondrial reactive oxygen species (ROS) were greatly reduced by Rg3(S) and Rg3/Lipo. In addition, cells treated with Rg3/Lipo exhibited noticeably reduced apoptotic signals following IRA irradiation compared to untreated cells. Thus, considering aqueous solubility and cellular responses, Rg3/Lipo could serve as a promising infrared protector for healthy aging of skin cells.

Screening Methods for Anti-senescence Activity in Dermal Fibroblasts under Pyruvate-deprivation Conditions

  • Kil, In Sup;Shim, Jinsup;Cho, Gayoung;Choi, Sowoong;Son, Eui Dong;Kim, Hyoung-June
    • Korea Journal of Cosmetic Science
    • /
    • v.1 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • The identification of compounds with anti-senescence activity in cell culture system is a first step in aging research. Given that pyruvate can be used energy source by conversion to acetyl-CoA in mitochondria, and protects cultured cell from various stress-induced cell damage and cell death, synthetic media (e.g., DMEM) often includes 1 mM pyruvate, which is very higher than the pyruvate concentration in human blood (approximately 30 ��M). However, the use of medium containing high concentration of pyruvate is not suitable for screening anti-senescence compounds, because pyruvate also protects against the cellular senescence of primary human dermal fibroblasts (NHDFs) through NAD+ generated during conversion to lactate. In this study, four extracts, i.e., Sprouted seed and fruit complex, Poncirus trifoliata fruit extract, Jaum balancing complex, and Prunus mume extract were used for evaluation of different anti-senescence effect in the absence or presence of 0.1 mM pyruvate, similar to the physiological pyruvate concentration. The senescence in NHDFs cultured with DMEM in the presence of 0.1 mM pyruvate (approximately the physiological concentration in human blood) is accelerated, as observed in pyruvate deprivation conditions. The cytotoxicity of the Poncirus trifoliata fruit extract was protected by pyruvate, and Jaum balancing complex and Prunus mume extract had anti-senescence activity in the presence of 0.1 mM pyruvate, but not in the absence of pyruvate. Given that pyruvate is a powerful protector against both cytotoxicity and cellular senescence, the screening of candidate agents for anti-senescence in high pyruvate conditions using an in vitro cell culture system is not valid. Therefore, we recommend the use of a low concentration of pyruvate to evaluate the anti-senescence effects of candidates, which is more similar to in vivo aging conditions than excessive stress-induced senescence models, to exclude the effect of excessive pyruvate in vitro.

Morin Protects Normal Human Dermal Fibroblasts from Ultraviolet B-induced Apoptosis (자외선 B로 유도된 아포토시스로부터 모린의 정상 인간 피부 섬유아세포 보호효과)

  • Jeong Eon Park;Ao Xuan Zhen;Mei Jing Piao;Kyoung Ah Kang;Pincha Devage Sameera Madushan Fernando;Herath Mudiyanselage Udari Lakmini Herath;Jin Won Hyun
    • Journal of Life Science
    • /
    • v.33 no.4
    • /
    • pp.305-314
    • /
    • 2023
  • Ultraviolet B (UVB) irradiation causes skin diseases by inducing cellular oxidative stress, photoaging, and inflammation. This study aimed to investigate the protective effects of morin against UVB-induced oxidative stress in normal human dermal fibroblasts (NHDFs). Morin has been reported to be a potential therapeutic candidate for oxidative stress-mediated diseases, neurodegenerative diseases, and inflammation. Since morin has been identified as a potential antioxidant, we speculated that morin could alleviate UVB-induced apoptosis in NHDFs. Cell viability and intracellular reactive oxygen species (ROS) levels were measured using the MTT assay, H2DCFDA, and the DHE staining method, respectively. Lipid peroxidation and protein carbonyl formation were tested using ELISA kits. DNA fragmentation and comet assay were used to assess DNA damage. Apoptotic bodies were analyzed using Hoechst 33342 staining and TUNEL assay. The expression of apoptosis-related proteins was examined using Western blot analysis. Morin showed a cyto-protective effect by scavenging UVB-induced ROS, increasing the expression of antioxidant-related proteins and inhibiting UVB-induced oxidative alterations such as lipid peroxidation, protein carbonylation, and DNA damage. Morin protects against UVB-induced cell apoptosis by inhibiting Bcl-2-associated X protein, caspase-9, and caspase-3 expression, while increasing the expression of the anti-apoptotic protein Bcl-2. These effects of morin were conferred through decreased phosphorylation of p38 and c-Jun N-terminal kinase 1/2. The results demonstrated that morin may be developed as a preventive/therapeutic drug to be used to prevent UVB-induced skin damage.