• Title/Summary/Keyword: NICs

Search Result 806, Processing Time 0.841 seconds

Effect of Seed Priming Treatment on the germination of Sesame

  • Shim, Kang-Bo;Cho, Sang-Kyun;Hwang, Jung-Dong;Pae, Suk-Bok;Lee, Myoung-Hee;Ha, Tae-Jung;Park, Chang-Hwang;Park, Keum-Yong;Byun, Jae-Cheon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.4
    • /
    • pp.416-421
    • /
    • 2009
  • This experiment was conducted to find out optimum priming treatment conditions to the sesame seed as a preliminary study for enhancing sesame germination properties. Effective priming agents and concentrations for sesame seed were $K_3PO_4$, 200 mM and PEG6000, -1.0 MPa respectively. Optimum priming temperature and duration were $15^{\circ}C$, 4 days in view of germination speed and germination percentage. PEG6000 with -1.0 MPa was selected as an efficient priming treatment condition at $15^{\circ}C$, 4 days. This study suggested that priming treatment to sesame seed would be an effective technique enhancing sesame seed germination and shortening time to the $T_{50}$ at the field condition, but the efficiency of priming treatments to the sesame seed would be strongly dependent on individual or integrated conditions of priming agent, concentration, temperature and duration etc.

Effect of Active Nutrient Uptake on Heading Under Low Temperature in Rice

  • Hwang, Woon-Ha;Kang, Jea Ran;Baek, Jung-Sun;An, Sung-Hyun;Jeong, Jae-Heok;Jeong, Han-Yong;Lee, Hyen-Seok;Yun, Jong-Tak;Lee, Gun-Hwi;Choi, Kyung-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.3
    • /
    • pp.163-170
    • /
    • 2016
  • Heading time is important element for yield and quality in crops. Among day length and temperature which influence on heading, temperature effect has not been investigated well. To investigate temperature effect on heading, heading date and plant growth characters were checked under the low and high temperature conditions in short day length. Analyzing heading date of six Korean varieties under the high and low temperature condition, heading date of varieties were delayed under low temperature. In the low temperature condition, dry weight and area of leaf were reduced. Varieties showing more delay of heading under low temperature also showed more reduction in leaf area. After selecting three varieties showing significant difference in leaf growth and heading date under different temperature conditions, nutrient contents of plant were analyzed. Nitrogen content was reduced in leaf and shoot under the low temperature condition. OsNRT2.3, nitrate transporter, was significantly down regulated in varieties showing more heading delay. Available phosphate content was decreased in leaf, but increased in shoot due to reduction of phosphate mobility. OsPT1, phosphate transporter regulating phosphate uptake, was more down regulated in varieties showing more heading delay. OsPT6, phosphate transporter regulating phosphate transport in plant, was also significantly down regulated in those varieties. With these data, we expected that active nitrogen and available phosphate uptake and transport in plant would increase leaf growth then might reduce heading delay under the low temperature condition.

Agronomic characteristics of stay-green mutant derived from an early-maturing rice variety 'Pyeongwon'

  • Won, Yong-Jae;Ji, Hyeon-So;Ahn, Eok-Keun;Lee, Jeong-Heui;Jung, Kuk-Hyun;Lee, Sang-Bok;Hong, Ha-Cheol;Hyun, Ung-Jo;Ha, Woon-Goo;Kim, Myeong-Ki;Kim, Byeong-Ju
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • /
    • pp.72-72
    • /
    • 2017
  • We found a new stay-green mutant from 'Pyeongwon' which is an early-maturing rice variety in Korea. The mutant showed green leaves after grain ripening period and it maintained higher SPAD value than wild type rice plant and original variety 'Pyeongwon'. The stay-green trait in rice, three genes have been identified up to date. The non-yellow coloring1 (NYC1) gene encodes a chloroplast-localized short-chain dehydrogenase/reductase (SDR) with three transmembrane domains. The non-yellow coloring3 (NYC3) gene encodes a plastid-localizing alpha/beta hydrolase-fold family protein with an esterase/lipase motif. The Sgr gene encodes a novel chloroplast protein and regulates the destabilization of the light-harvesting chlorophyll binding protein (LHCP) complexes of the thylakoid membranes, which is a prerequisite event for the degradation of chlorophylls and LHCPs during senescence. After sequencing the PCR products, we found a single nucleotide variation($A{\rightarrow}T$) in the NYC1 gene, which changes the amino acid lysine to methionine. The NYC1 gene encodes a short-chain dehydrogenase/reductase(SDR) protein. And we confirmed the co-segregation between SNP and stay-green trait from genotyping the progenies of the mutant.

  • PDF