• Title/Summary/Keyword: NLJD System

Search Result 4, Processing Time 0.016 seconds

Design of Slit on Ground Plane for Improving Axial Ratio of Spiral Antenna (스파이럴 안테나의 축비 개선을 위한 접지면 위의 슬릿 설계)

  • Lee, Won-Bin;Ryu, Joo-Hyeon;Kim, Youngwook;Min, Kyeong-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.4
    • /
    • pp.251-260
    • /
    • 2017
  • This paper describes the design of a slit on ground plane to improve the axial ratio of the spiral antenna for the NLJD system application. A proposed slit shape located on the ground plane is changed to compare with the archimedean spiral slit shape of the antenna in reference [7]. In order to improve the axial ratio, the slit on the ground plane is divided by the uniform angle and the conductor of position where the current has the opposite direction each other is eliminated. Measured return loss, radiation pattern and gain show a good agreement with the computer simulation results. Even though the proposed slit structure on the ground plane was changed to compare with ones of reference [7], the characteristics such as return loss, radiation pattern and gain are not almost changed and only the axial ratio was remarkably improved at 4.88 GHz.

Design of Circularly Polarized Multi Band Antenna for Non-Linear Junction Detector System (비선형 소자 탐지 시스템용 원편파 다중 공진 안테나의 설계)

  • Kim, Jeong-Won;Min, Kyoeng-Sik;Park, Chan-Jin;Jeong, Jae-Hwan;Lee, Sak;Kwon, Hae-Chan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.3
    • /
    • pp.292-299
    • /
    • 2012
  • This paper proposes the design of circularly polarized multi band antenna for a non-linear junction detector (NLJD) system. In order to design for broad bandwidth, the CPW (Co-Planar Waveguide) feeding method is considered in this design. In order to realize the circular polarization, the axial ratio was controlled by inserting a $45^{\circ}$ inclined slot on radiating element and by cutting an edge of the radiating patch. Measurement results of return loss, bandwidth, axial ratio, polarization pattern and gain are agreed well with their simulation results in interested frequency band at 2.4~ 2.44 GHz, 4.84~4.92 GHz, and 7.28~7.32 GHz.

Design of Broadband Spiral Antenna for a Portable Non-Linear Junction Detector System (휴대형 NLJD용 광대역 스파이럴 안테나의 설계)

  • Kim, Jeong-Won;Min, Kyeong-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.1
    • /
    • pp.36-46
    • /
    • 2013
  • This paper proposes the design of broadband spiral antenna for a potable non-linear junction detector (NLJD) system. To realize the broadband antenna design, it was considered optimization of the number of spiral turns by iteration calculation. Ground plane with the Archimedean spiral slit to keep the same current distribution between radiating plane and ground is considered for circular polarization design. In order to realize high directivity and high gain of the proposed antenna, the cavity wall and the metal cap which is located on back of ground plane were also considered in design. Measurement results of return loss were agreed well with VSWR 2:1 at interested frequency band among 2.4 to 2.44 GHz, 4.84 to 4.92 GHz and 7.28 to 7.36 GHz. Measured axial ratio was observed 3 dB below and showed reasonable agreement with simulation results. Characteristics of the RHCP(Right Hand Circular Polarization) with the measured gain of 6.8 dBi above at interested frequency band were also observed.

Design for High Gain Spiral Antenna by Added Conical Cavity Wall

  • Jeong, Jae-Hwan;Min, Kyeong-Sik;Kim, In-Hwan
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.3
    • /
    • pp.165-172
    • /
    • 2013
  • This paper describes a design for a spiral antenna with a conical wall to obtain the high gain. The gain and the axial ratio of the spiral antenna were improved by a new design that included a conical wall and an optimized Archimedean slit on the ground plane in a conventional antenna with a circular cavity wall and a 4.5-turn slit. A gain improvement of 9.5 dBi higher and a good axial ratio of 1.9 dB lower were measured by the added conical wall and the newly designed slit from the current distribution control on the ground plane, respectively. The measured return loss, gain and axial ratio of the proposed antenna showed a good agreement with the simulated results. The proposed antenna will be applied to a non-linear junction detector system.