• 제목/요약/키워드: NMR

검색결과 4,951건 처리시간 0.039초

NMR Structural Analysis and 3D Homology Modelling of APG8a from Arabidopsis thaliana

  • Chae Young-Kee
    • 한국자기공명학회논문지
    • /
    • 제10권1호
    • /
    • pp.96-104
    • /
    • 2006
  • The gene coding for APG8a (At4g21980), a protein from Arabidopsis thaliana, is involved in the autophagy process. The protein is an interesting candidate for structure determination by NMR spectroscopy. Toward this end, APG8a has been produced recombinantly in Escherichia coli and typical NMR experiments such as $^{15}N-HSQC$, HNCA, HN(CO)CA, CBCA(CO)NH, HCCH-TOCSY, HNCO were performed. The backbone resonances, HN, N, CA, CB, and C' were sequence-specifically assigned, and the secondary structures including 3 $\alpha$ helices and $4\beta$ strands were deduced based on the assignments. Due to the intrinsic flexibility or the effect of the denaturant, the backbone resonances were not fully observed. Since the structure calculation by NMR data was not possible, the 3-dimensional model was built based on the sequence homology, and compared with the NMR results. The overall structure of the model could explain and complement the NMR derived secondary structures.

  • PDF

Quantitative NMR Analysis of PTMEG compounds

  • Kim, Gilhoon;Won, Hoshik
    • 한국자기공명학회논문지
    • /
    • 제20권1호
    • /
    • pp.7-12
    • /
    • 2016
  • PTMEG(Polytetramethylene ether glycol) is a polymer compound widely used as a wide range of applications in the textile industry. PTMEG substance carrying various 1,800~2,000 molecular weight are mainly used as the raw material of the spandex production. Molecular weight and degree of polymerization value for 4 different PTMEG samples under pilot plant scale synthetic process were determined by a new quantitative NMR method. In NMR experiments, p-toluenesulfonic acid(TSOH) was used for external standard material of PTMEG quantitative analysis. were measuring The concentration of the primary standard TSOH was measured by UV/Vis spectroscopy. By using NMR peak assignments and the integral values of designated proton NMR peaks, We were able to measure the % composition of the synthetic PTMEG polymers, concentrations, molecular weight and the degree of polymerization that show the synthetic process of each manufacturing pilot plant. By utilizing a newly developed quantitative NMR method were able to obtain the molecular weight of PTMEG samples within 0.08 error % range.

Liquid Chromatography-Solid Phase Extraction-NMR (LC-SPE-NMR) Analysis of Liquid Crystalline Mixtures

  • Park, Gregory Hyung-Jin;Park, Ae-Na;Rho, Kyung-Rae;Shin, Jong-Ho;Kim, Yeong-Jeon;Jo, Sung-Chan;Oh, Weon-Sik
    • 한국자기공명학회논문지
    • /
    • 제15권1호
    • /
    • pp.14-24
    • /
    • 2011
  • We have performed Liquid Chromatography-Solid Phase Extraction-NMR (LC-SPE-NMR) analysis for liquid crystalline mixture and elucidated the structures of selected components by NMR spectra. Combining the results of one-dimensional 1H experiments as well as homonuclear and heteronuclear two-dimensional experiments, we could analyze the molecular structure of the liquid crystal singles whose structure had not been interpretable by mass spectrometry alone.

Molecular Dynamics in Paraelectric Phase of KH2PO4 Crystals Studied by Single Crystal NMR and MAS NMR

  • Paik, Younkee;Chang, Celesta L.
    • 한국자기공명학회논문지
    • /
    • 제17권1호
    • /
    • pp.19-23
    • /
    • 2013
  • The temperature dependences of the NMR spectrum and the spin-lattice relaxation times in $KH_2PO_4$ were investigated via single-crystal NMR and MAS NMR. The stretched-exponential relaxation that occurred because of the distribution of correlation times was indicative of the degree of the distribution of the double-well potential on the hydrogen bond. The behaviors responsible for the strong temperature dependences of the $^1H$ and $^{31}P$ spin-lattice relaxation times in the rotating frame $T_{1{\rho}}$ in $KH_2PO_4$ are likely related to the reorientational motion of the hydrogen-bond geometry and the $PO_4$ tetrahedral distortion.

Discrimination of JNK3 bound small molecules by saturation transfer difference NMR experiments

  • Lim, Jong-Soo;Ahn, Hee-Chul
    • 한국자기공명학회논문지
    • /
    • 제16권1호
    • /
    • pp.67-77
    • /
    • 2012
  • The small molecule binding to the c-Jun N-terminal kinase 3 (JNK3) was examined by the measurements of saturation transfer difference (STD) NMR experiments. The STD NMR experiment of ATP added to JNK3 clearly showed the binding of the nucleotide to the kinase. The STD NMR spectrum of dNTPs added to JNK3 discriminated the kinase-bound nucleotide from the unbound ones. After the five-fold addition of ATP to the dNTPs and JNK3 mixture, only signals of the cognate substrate of JNK3, ATP, were observed from the STD NMR experiment. These results signify that by the STD NMR the small molecules bound to JNK3 can be discriminated from the pool of the unbound molecules. Furthermore the binding mode of the small molecule to JNK3 can be determined by the competition experiments with ATP.

새로운 분석법으로서의 2D NMR 분광법에 관한 이론적 배경 및 고찰

  • 김택제;정민환;이강봉
    • 분석과학
    • /
    • 제5권2호
    • /
    • pp.1096-1113
    • /
    • 1992
  • 분자구조, 동력학, 그리고 분자들의 화학분응에 관한 정확한 지식은 분자들의 기능과 성질을 이해하는 데 중요한 정보를 제공한다. 2D NMR 분광법의 개발은 용액상의 분자들에 관한 이러한 의문을 해결하는 데 결정적인 역할을 하게 되었다. 그동안 아주 다양한 NMR기술들이 개발되어 왔으며 현재 그들에 대한 이용이 활발하게 진행되고 있다. 그러나 성공적인 2D NMR 분광법의 적용을 위해서는 적당한 기계뿐만 아니라 실험실의 정확한 선택 및 최적 조건의 변수들을 선택해야 하며 스펙트럼의 세밀하고도 정확한 해석을 필요로 한다. 곱연산자 방식(product operator formalism)의 도입은 펄스 FT NMR 분광학을 정성, 정량적으로 이해하도록 하는 것을 가능케 했으며, 이번 해설은 연속적으로 주어지는 펄스의 이해를 위해서 필요로 하는 상의 순환(phase cycle) 및 곱연산자 방식을 이용하여 다양한 2D NMR 기술의 이해를 돕고, 분석기기로서 2D NMR 분광법이 널리 사용 및 활용되어지고자 하는 데 목적이 있다.

  • PDF

CW-NMR 기법을 이용한 자기장 정밀측정 (Precise Measurement of Magnetic Field Using CW-NMR Technique)

  • 이정한;이대행;김민철;이순칠;홍계원;이호준
    • 한국자기학회지
    • /
    • 제5권1호
    • /
    • pp.79-85
    • /
    • 1995
  • 초전도 자석의 공간상 자기장 분포를 균일하게 할 때 사용하기 위한 정밀한 자기측정 장치를 개발하였다. 개발한 장치는 연속파 핵자기공명(CW-NMR)을 이용하였고 2.8 T에서 5.8 T까지의 자기장 범위에서 공간상 자기장 분포를 0.3 ppm 이상의 분해능으로 측정할 수 있다. NMR 시료로는 직경 4 mm, 높이 4 mm의 체적에 물을 넣어 사용하였으며, 10 T 이상 의 강자기장을 측정할 경우를 고려하여 중수를 시료로 이용한 실험도 하였다. 이 장치는 기존의 NMR 자기장측정 장비에 비해 훨씬 저럼한 가격으로 제작 가능하다.

  • PDF

300MHz급 NMR Transceiver 설계 및 제작 (A Study on the 300MHz NMR Transceiver)

  • 박양하;진승오;원진임;허영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.3210-3212
    • /
    • 2000
  • We designed and manufactured 300MHz NMR RF Transceiver. NMR system is composed of NMR Spectrometer, Superconductive Magnet and Pulse Programmer, GUI. NMR RF Transceiver is composed of transmitter, receiver, frequency synthesizer. T/R switch, main power amp., RF coil. To phase modulation, transmitter is composed of mixer, splitter and combiner et al. To weak signal detection, receiver is composed of pre-amp., filter, mixer et al. Each module is manufactured PCB. And installed NMR system to detect chemical component of specimen. In result, we can get the information of specimen.

  • PDF

High-pressure NMR application for α-synuclein

  • Kim, Jin Hae
    • 한국자기공명학회논문지
    • /
    • 제26권2호
    • /
    • pp.21-23
    • /
    • 2022
  • High-pressure (HP) NMR is a powerful method to elucidate various structural features of amyloidogenic proteins. Following the previous mini-review recapitulating the HP-NMR application for amyloid-β peptides of the last issue [J. H. Kim, J. Kor. Mag. Reson. Soc. 26, 17 (2022)], the recent advancements in the HP NMR application for α-synuclein (α-Syn) are briefly summarized and discussed here. Although α-Syn is a well-known intrinsically disordered protein (IDP), several studies have shown that it can also exhibit heterogeneous yet partially folded conformations, which may correlate with its amyloid-forming propensity. HP NMR has been a valuable tool for investigating the dynamic and transient structural features of α-Syn and has provided unique insights to appreciate its aggregation-prone characters.

Practical Guide to NMR-based Metabolomics - II : Metabolite Identification & Quantification

  • Jung, Young-Sang
    • 한국자기공명학회논문지
    • /
    • 제22권1호
    • /
    • pp.10-17
    • /
    • 2018
  • Metabolite identification and quantification are one of the foremost important issues in metabolomics. In NMR based metabolomics, mainly one-dimensional proton NMR spectra of biofluids, such as urine and serum are measured. However, it is not always easy to identify and quantify metabolites in one-dimensional proton NMR spectra. This article introduces useful public metabolite databases, metabolic profiling software, and articles.