• Title/Summary/Keyword: NMR

Search Result 4,951, Processing Time 0.031 seconds

Discriminating the Geographical Origin of Sesame Seeds by Low Field NMR (Low field NMR을 이용한 참깨의 원산지 판별)

  • Rho, Jeong-Hae;Lee, Sun-Min
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.1062-1066
    • /
    • 2002
  • Low field NMR was employed to discriminate the geographical origin of sesame seeds from Sudan, China, and Korea. Sudan sesame seeds had the lowest contents of moisture and crude fat. Chemical components of Korean and Chinese sesame seeds were similar, whereas relaxation times $(T_1-IR,\;T_1-SR)$ measeured through spin-lattice relaxation pluse techniques using 20 MHz NMR showed significant difference (p0.05). Canonical discriminant analysis could be used to identify the habitat of sesame seeds with over 90% accuracy of NMR results. Non-destructive and fast NMR techniques can be applied to classify Korean sesame seeds from those of other origins.

Complete Relaxation and Conformational Exchange Matrix (CORCEMA) Analysis of Saturation Transfer Difference (STD) NMR Spectra of Ligand-Protein Complexes

  • Krishna, N.Rama;Jayalakshmi, V.
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.6 no.2
    • /
    • pp.94-102
    • /
    • 2002
  • An interesting recent application of intermolecular NOE experiment is the saturation transfer difference NMR(STD-NMR) method that is useful in screening compound libraries to identify bio-active ligands. This technique also identifies the group epitopes of the bound ligand in a reversibly forming protein-ligand complex. We present here a complete relaxation and conformational exchange matrix (CORCEMA) theory (Moseley et al., J. Magn. Reson. B, 108, 243-261 (1995)) applicable for the STD-NMR experiment. Using some ideal model systems we have analyzed the factors that influence the STD intensity changes in the ligand proton NMR spectrum when the resonances from some protons on the receptor protein are saturated. These factors will be discussed and some examples of its application in some model systems will be presented. This CORCEMA theory for STD-NMR and the associated algorithm are useful in a quantitative interpretation of the STD-NMR effects, and are likely to be useful in structure-based drug design efforts. They are also useful in a quantitative characterization of protein-protein (or protein-nucleic acid) contact surfaces from an intermolecular cross-saturation NMR experiment.

  • PDF

Sensitivity Enhancement in Solution NMR via Photochemically Induced Dynamic Nuclear Polarization

  • Im, Jonghyuk;Lee, Jung Ho
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • Enhancements in NMR sensitivity have been the main driving force to extend the boundaries of NMR applications. Recently, techniques to shift the thermally populated nuclear spin states are employed to gain high NMR signals. Here, we introduce a technique called photochemically induced dynamic nuclear polarization (photo-CIDNP) and discuss its progresses in enhancing the solution-state NMR sensitivity.

Transverse relaxation-optimized HCN experiment for tautomeric states of histidine sidechains

  • Schmidt, Holger;Himmel, Sebastian;Walter, Korvin F.A.;Klaukien, Volker;Funk, Michael;Lee, Dong-Han
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.12 no.2
    • /
    • pp.89-95
    • /
    • 2008
  • Function of protein is frequently related with tautomeric states of histidine sidechains. Thus, several NMR experiments were developed to determine the tautomeric states of histidines. However, poor sensitivity of these experiments caused by long duration of magnetization transfer periods is unavoidable. Here, we alleviate the sensitivity of HCN experiment for determining the tautomeric states of histidine residues using TROSY principle to suppress transverse relaxation of $^{13}C$ spins during long polarization transfer delays involving $^{13}C-^{15}N$ scalar couplings. In addition, this experiment was used to assign the sidechain resonances of histidines. These assignments can be used to follow the pH-titration of histidine sidechains.

Practical Guide to NMR-based Metabolomics - I : Introduction and Experiments

  • Jung, Young-Sang
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.21 no.3
    • /
    • pp.96-101
    • /
    • 2017
  • Metabolomics is one of latest '-omics', which is to analyze metabolome in cells, tissues and biofluids and to study metabolisms. It has become increasingly popular since 1990. The first goal of metabolomics is to analyze metabolites in a technical aspect. The major two analytical platforms in metabolomics are NMR spectroscopy and mass spectrometry (MS). MS is superior to NMR for detecting many more metabolites. That is one of the most important factors in metabolomics. However, NMR also has several advantages over MS. In this review, I firstly introduced metabolomics by comparing NMR-based metabolomics and MS-based metabolomics. Second, I explored technical issues on sample preparation and NMR experiments for metabolite identification and quantification.