• Title/Summary/Keyword: Nagata ring

Search Result 20, Processing Time 0.028 seconds

Some Extensions of Rings with Noetherian Spectrum

  • Park, Min Ji;Lim, Jung Wook
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.3
    • /
    • pp.487-494
    • /
    • 2021
  • In this paper, we study rings with Noetherian spectrum, rings with locally Noetherian spectrum and rings with t-locally Noetherian spectrum in terms of the polynomial ring, the Serre's conjecture ring, the Nagata ring and the t-Nagata ring. In fact, we show that a commutative ring R with identity has Noetherian spectrum if and only if the Serre's conjecture ring R[X]U has Noetherian spectrum, if and only if the Nagata ring R[X]N has Noetherian spectrum. We also prove that an integral domain D has locally Noetherian spectrum if and only if the Nagata ring D[X]N has locally Noetherian spectrum. Finally, we show that an integral domain D has t-locally Noetherian spectrum if and only if the polynomial ring D[X] has t-locally Noetherian spectrum, if and only if the t-Nagata ring $D[X]_{N_v}$ has (t-)locally Noetherian spectrum.

A Note on S-Noetherian Domains

  • LIM, JUNG WOOK
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.3
    • /
    • pp.507-514
    • /
    • 2015
  • Let D be an integral domain, t be the so-called t-operation on D, and S be a (not necessarily saturated) multiplicative subset of D. In this paper, we study the Nagata ring of S-Noetherian domains and locally S-Noetherian domains. We also investigate the t-Nagata ring of t-locally S-Noetherian domains. In fact, we show that if S is an anti-archimedean subset of D, then D is an S-Noetherian domain (respectively, locally S-Noetherian domain) if and only if the Nagata ring $D[X]_N$ is an S-Noetherian domain (respectively, locally S-Noetherian domain). We also prove that if S is an anti-archimedean subset of D, then D is a t-locally S-Noetherian domain if and only if the polynomial ring D[X] is a t-locally S-Noetherian domain, if and only if the t-Nagata ring $D[X]_{N_v}$ is a t-locally S-Noetherian domain.

WHEN THE NAGATA RING D(X) IS A SHARP DOMAIN

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.24 no.3
    • /
    • pp.537-543
    • /
    • 2016
  • Let D be an integral domain, X be an indeterminate over D, D[X] be the polynomial ring over D, and D(X) be the Nagata ring of D. Let [d] be the star operation on D[X], which is an extension of the d-operation on D as in [5, Theorem 2.3]. In this paper, we show that D is a sharp domain if and only if D[X] is a [d]-sharp domain, if and only if D(X) is a sharp domain.

The *-Nagata Ring of almost Prüfer *-multiplication Domains

  • Lim, Jung Wook
    • Kyungpook Mathematical Journal
    • /
    • v.54 no.4
    • /
    • pp.587-593
    • /
    • 2014
  • Let D be an integral domain with quotient field K, $\bar{D}$ denote the integral closure of D in K and * be a star-operation on D. In this paper, we study the *-Nagata ring of AP*MDs. More precisely, we show that D is an AP*MD and $D[X]{\subseteq}\bar{D}[X]$ is a root extension if and only if the *-Nagata ring $D[X]_{N_*}$ is an AB-domain, if and only if $D[X]_{N_*}$ is an AP-domain. We also prove that D is a P*MD if and only if D is an integrally closed AP*MD, if and only if D is a root closed AP*MD.

PRIME FACTORIZATION OF IDEALS IN COMMUTATIVE RINGS, WITH A FOCUS ON KRULL RINGS

  • Gyu Whan Chang;Jun Seok Oh
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.407-464
    • /
    • 2023
  • Let R be a commutative ring with identity. The structure theorem says that R is a PIR (resp., UFR, general ZPI-ring, π-ring) if and only if R is a finite direct product of PIDs (resp., UFDs, Dedekind domains, π-domains) and special primary rings. All of these four types of integral domains are Krull domains, so motivated by the structure theorem, we study the prime factorization of ideals in a ring that is a finite direct product of Krull domains and special primary rings. Such a ring will be called a general Krull ring. It is known that Krull domains can be characterized by the star operations v or t as follows: An integral domain R is a Krull domain if and only if every nonzero proper principal ideal of R can be written as a finite v- or t-product of prime ideals. However, this is not true for general Krull rings. In this paper, we introduce a new star operation u on R, so that R is a general Krull ring if and only if every proper principal ideal of R can be written as a finite u-product of prime ideals. We also study several ring-theoretic properties of general Krull rings including Kaplansky-type theorem, Mori-Nagata theorem, Nagata rings, and Noetherian property.

EAKIN-NAGATA THEOREM FOR COMMUTATIVE RINGS WHOSE REGULAR IDEALS ARE FINITELY GENERATED

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.18 no.3
    • /
    • pp.271-275
    • /
    • 2010
  • Let R be a commutative ring with identity, T(R) be the total quotient ring of R, and D be a ring such that $R{\subseteq}D{\subseteq}T(R)$ and D is a finite R-module. In this paper, we show that each regular ideal of R is finitely generated if and only if each regular ideal of D is finitely generated. This is a generalization of the Eakin-Nagata theorem that R is Noetherian if and only if D is Noetherian.

GRADED INTEGRAL DOMAINS AND NAGATA RINGS, II

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.25 no.2
    • /
    • pp.215-227
    • /
    • 2017
  • Let D be an integral domain with quotient field K, X be an indeterminate over D, K[X] be the polynomial ring over K, and $R=\{f{\in}K[X]{\mid}f(0){\in}D\}$; so R is a subring of K[X] containing D[X]. For $f=a_0+a_1X+{\cdots}+a_nX^n{\in}R$, let C(f) be the ideal of R generated by $a_0$, $a_1X$, ${\ldots}$, $a_nX^n$ and $N(H)=\{g{\in}R{\mid}C(g)_{\upsilon}=R\}$. In this paper, we study two rings $R_{N(H)}$ and $Kr(R,{\upsilon})=\{{\frac{f}{g}}{\mid}f,g{\in}R,\;g{\neq}0,{\text{ and }}C(f){\subseteq}C(g)_{\upsilon}\}$. We then use these two rings to give some examples which show that the results of [4] are the best generalizations of Nagata rings and Kronecker function rings to graded integral domains.

CHARACTERIZATIONS OF GRADED PRÜFER ⋆-MULTIPLICATION DOMAINS

  • Sahandi, Parviz
    • Korean Journal of Mathematics
    • /
    • v.22 no.1
    • /
    • pp.181-206
    • /
    • 2014
  • Let $R={\bigoplus}_{\alpha{\in}\Gamma}R_{\alpha}$ be a graded integral domain graded by an arbitrary grading torsionless monoid ${\Gamma}$, and ⋆ be a semistar operation on R. In this paper we define and study the graded integral domain analogue of ⋆-Nagata and Kronecker function rings of R with respect to ⋆. We say that R is a graded Pr$\ddot{u}$fer ⋆-multiplication domain if each nonzero finitely generated homogeneous ideal of R is ⋆$_f$-invertible. Using ⋆-Nagata and Kronecker function rings, we give several different equivalent conditions for R to be a graded Pr$\ddot{u}$fer ⋆-multiplication domain. In particular we give new characterizations for a graded integral domain, to be a $P{\upsilon}MD$.

SEMISTAR G-GCD DOMAIN

  • Gmiza, Wafa;Hizem, Sana
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.6
    • /
    • pp.1689-1701
    • /
    • 2019
  • Let ${\star}$ be a semistar operation on the integral domain D. In this paper, we prove that D is a $G-{\tilde{\star}}-GCD$ domain if and only if D[X] is a $G-{\star}_1-GCD$ domain if and only if the Nagata ring of D with respect to the semistar operation ${\tilde{\star}}$, $Na(D,{\star}_f)$ is a G-GCD domain if and only if $Na(D,{\star}_f)$ is a GCD domain, where ${\star}_1$ is the semistar operation on D[X] introduced by G. Picozza [12].

A NOTE ON w-NOETHERIAN RINGS

  • Xing, Shiqi;Wang, Fanggui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.541-548
    • /
    • 2015
  • Let R be a commutative ring. An R-module M is called a w-Noetherian module if every submodule of M is of w-finite type. R is called a w-Noetherian ring if R as an R-module is a w-Noetherian module. In this paper, we present an exact version of the Eakin-Nagata Theorem on w-Noetherian rings. To do this, we prove the Formanek Theorem for w-Noetherian rings. Further, we point out by an example that the condition (${\dag}$) in the Chung-Ha-Kim version of the Eakin-Nagata Theorem on SM domains is essential.