• Title/Summary/Keyword: Nanopattern

Search Result 31, Processing Time 0.037 seconds

Enhancement of Size Gradient of Imprinted Nanopattern by Plasma Etching under a Nonuniform Magnetic Field

  • Lim, Jonghwan;Kim, Soohyun;Kim, Da Sol;Jeong, Mira;Lee, Jae-Jong;Yun, Wan Soo
    • Applied Science and Convergence Technology
    • /
    • v.24 no.5
    • /
    • pp.184-189
    • /
    • 2015
  • We report a simple way to enhance the size gradient of an imprinted nanopattern through oxygen plasma etching under a nonuniform magnetic field. A sample substrate was placed next to a magnet, and then a nonuniform magnetic field condition was formed around the sample. Using oxygen plasma etching, a line pattern having an initial width of 273 nm was gradually modified from 248 nm at one end to 182 nm at the other end. Controlling the arrangement of the magnet and sample, we could induce a triangular shape size gradient. We verified that the gradually modified nanopatterns we produced are applicable to continual optical property control, showing a possibility to be utilized for optical components such as gratings and polarizers.

A Study on the Liquid Crystal Orientation Characteristics of the Inorganic NiOx Film with Aligned Nanopattern Using Imprinting Process (무기막 NiOx의 정렬 패턴 전사를 이용한 액정의 배향 특성 연구)

  • Oh, Byeong-Yun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.5
    • /
    • pp.357-360
    • /
    • 2019
  • We demonstrate an alignment technology using an imprinting process on an inorganic NiOx film. The aligned nanopattern was fabricated on a silicon wafer by laser interference lithography. The aligned nano pattern was then imprinted onto the sol-gel driven NiOx film using an imprinting process at an annealing temperature of $150^{\circ}C$. After the imprinting process, parallel grooves had been formed on the NiOx film. Atomic force microscopy and water contact angle measurements were performed to confirm the parallel groove on the NiOx film. The grooves caused liquid crystal alignment through geometric restriction, similar to grooves formed by the rubbing process on polyimide. The liquid crystal cell exhibited a pretilt angle of $0.2^{\circ}$, which demonstrated homogeneous alignment.

An Ultra-thin IR Cut-off Filter Based on Nanostructures (나노구조 기반 초박형 적외선 차단 필터)

  • Hyundo Yang;Jong-Kwon Lee
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.1
    • /
    • pp.24-29
    • /
    • 2024
  • We propose a hyperbolic metastructure based on a nanopatterned metal (Ag)-dielectric (PDMS) multilayer and report on its performance in an infrared (IR) cut-off filter for imaging devices. By optimizing the size of the square-shaped Ag nanopattern and the thickness of PDMS surrounding the Ag nanopattern, the proposed IR cut-off filter blocks 99% of light in the 0.70-1.01 ㎛ wavelength band while maintaining a high transmittance of over 94% in the visible region. Here, the cut-off wavelength band starts at a region above the epsilon-near-zero wavelength of the hyperbolic metastructure and ends at the point where plasmonic absorption appears strongly. It is observed that transmittance in the wavelength region longer than the IR cut-off band increases again due to plasmonic coupling among horizontally adjacent Ag nanopatterns. This metastructure can improve the performance of IR-blocking filters as well as allow it to be manufactured ultra-thin, which is applicable to various planar optical elements and integrated optical components.

Bioinspired superhydrophobic steel surfaces

  • Heo, Eun-Gyu;O, Gyu-Hwan;Lee, Gwang-Ryeol;Mun, Myeong-Un
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.509-509
    • /
    • 2011
  • Superhydrophobic surfaces on alloyed steels were fabricated with a non-conventional method of plasma etching and subsequent water immersion procedure. High aspect ratio nanopatterns of nanoflake or nano-needle were created on the steels with various Cr content in its composition. With CF4 plasma treatment in radio-frequence chemical vapor deposition (r.-f. CVD) method, steel surfaces were etched and fluorinated by CF4 plasma, which induced the nanopattern evolution through the water immersion process. It was found that fluorine ion played a role as a catalyst to form nanopatterns in water elucidated with XPS and TEM analysis. The hierarchical patterns in micro- and nano scale leads to superhydrophobic properties on the surfaces by deposition of a hydrophobic coating with a-C:H:Si:O film deposited with a gas precursor of hexamethlydisiloxane (HMDSO) with its lower surface energy of 24.2 mN/m, similar to that of curticular wax covering lotus surfaces. Since this method is based on plasma dry etching & coating, precise patterning of surface texturing would be potential on steel or metal surfaces. Patterned hydrophobic steel surfaces were demonstrated by mimicking the Robinia pseudoacacia or acacia leaf, on which water was collected from the humid air using a patterned hydrophobicity on the steels. It is expected that this facile, non-toxic and fast technique would accelerate the large-scale production of superhydrophobic engineering materials with industrial applications.

  • PDF

Electrochemical Surface Engineering for medical implants (전기화학적 임플란트 표면처리기술)

  • Kim, Du-Heon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.114-114
    • /
    • 2016
  • 임플란트로 널리 사용되고 있는 타이타늄 금속 표면을 처리하여 골융합 접촉 면적을 증가시키기 위한 다양한 방법들이 사용되고 있다. 본 연구에서는 마이크로 단위의 거칠기가 형성된 표면에 나노패턴화된 나노 거칠기를 전기화학적으로 형성시키는 방식(ENF: Electrochemical Nanopattern Formation)을 소개한다. SLA 표면처리 된 임플란트 표면에 100nm 수준의 나노패턴화된 그릿을 기존의 마이크로 그릿의 손상 없이 고르게 형성시켜 표면적을 극대화 할 수 있다. 이를 임플란트의 새로운 표면처리기술로 응용하기 위하여 기존의 표면처리기술과 비교분석하였다.

  • PDF

AAO 나노패턴을 응용한 실리콘 태양전지의 특성 연구

  • Choe, Jae-Ho;Lee, Jeong-Taek;Choe, Yeong-Ha;Kim, Geun-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.250-250
    • /
    • 2009
  • The fabricated the nanostructural patterns on the surface of SiN antireflection layer of polycrystalline Si solar cell using anodic aluminum oxide (AAO) masks in an inductively coupled plasma(ICP) etching process. The AAO nanopattern mask has the hole size of about 70~75nm and lattice constant of 100~120nm. The transferred nano-patterns were observed by the scanning electron microscope (SEM). The voltage of patterned Si solar cell enhanced.

  • PDF