• Title/Summary/Keyword: Naphthalene

Search Result 665, Processing Time 0.027 seconds

Cellular Responses of Pseundomonas sp. KKI to Two-Ring Polycyclic Aromatic Hydrocarbon, Naphthalene

  • Kahng, Hyung-Yeel
    • Journal of Microbiology
    • /
    • v.40 no.1
    • /
    • pp.38-42
    • /
    • 2002
  • The strain KKI isolated from soil contaminated with polycyclic aromatic hydrocarbons was identified as Pseundomonas sp. based on analyses by MIDI and Biolog Identification System. Cellular and physiological responses of strain KKI to two-ring polycyclic aromatic hydrocarbon, naphthalene were evaluated using radiorespirometry, PLFAs and sequence analysis of Rieske-type iron sulfur center of dioxygenase. KKI was found to be able to rapidly mineralize naphthalene. Notably, KKI cells pregrown on phenanthrene were able to mineralize naphthalene much more rapidly than naphthalenepregrown cells. The total cellular fatty acids of KKI were comprised of eleven C-even and two C-odd fatty acids (fatty acids < 0.2% in abundance were not considered in this calculation). Lipids 12:0 2OH, 12:03 OH, 16:0, 18:1 6c, 18:0 increased for naphthalene-exposed cells, while lipids 18:1 7c1/15:0 ism 2OH, 17:0 cyclo, 18:1 7c, 19:0 cyclo decreased. Data from Northern hybridization using a naphthalene dixoygenase gene fragment cloned out from KKI as a probe provided the information that naphthalene dioxygenase gene was more highly expressed in cells grown on phenanthrene than naphthalene.

Synthesis and Antifungal Activity of Naphthalene-1,4-diones Modified at Positions 2, 3, and 5

  • Ryu, Chung-Kyu;Chae, Mi-Jin
    • Archives of Pharmacal Research
    • /
    • v.28 no.7
    • /
    • pp.750-755
    • /
    • 2005
  • A series of 2-arylamino-5-hydroxy-naphthalene-1,4-diones, 3-arylamino-5-methoxy-naphthalene-1,4-diones, and 2-arylamino-3chloro-5-hydroxy-naphthalene-1,4-diones were synthesized and tested for in vitro antifungal activity against the species Candida and Aspergillus niger. Among those tested, 3-arylamino-5-methoxy-naphthalene-1,4-diones exhibited potent antifungal activity. In general, the 3-arylamino-5-methoxy-naphthalene-1,4-diones showed more potent antifungal activity than the 2-arylamino-5-hydroxy-naphthalene-1,4-diones and the 2-arylamino-3-chloro-5-hydroxy-naphthalene-1,4-diones.

Protection of Polaromonas naphthalenivorans CJ2 from Naphthalene Toxicity by Extracellular Polysaccharide Capsules

  • Park, Min-Jeong;Jeon, Ye-Ji;Madsen, Eugene L.;Jeon, Che-Ok
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.2
    • /
    • pp.41-45
    • /
    • 2007
  • Polaromonas naphthalenivorans CJ2, responsible for naphthalene degradation at a coal tar contaminated site, was isolated on MSB agar media supplied with naphthalene vapor as the sole carbon source at $10^{\circ}C$. The strain is not isolated under the same isolation condition using the same soil sediment at $20^{\circ}C$ although its optimum temperature is about $20^{\circ}C$. In this work we explored the reason why strain CJ2 could not have been isolated on MSB agar with naphthalene vapor at $20^{\circ}C$. Dispersed CJ2 cells in PBS buffer formed colonies on MSB agar with naphthalene vapor at $10^{\circ}C$ with low naphthalene vapor pressure, but not at $20^{\circ}C$ with high naphthalene vapor pressure. However, streaked cells without resuspension grew on MSB agar with naphthalene vapor at $10^{\circ}C,\;20^{\circ}C$, and even $25^{\circ}C$. Investigation of scanning electron microscopy showed that CJ2 cells formed extracellular polysaccharide (EPS) capsules, which were released easily from CJ2 cells by just dispersion. Therefore, it is concluded that strain CJ2 is able to overcome the naphthalene toxicity by forming a capsule-type barrier around the cells although it is susceptible to naphthalene toxicity at high temperature.

Characterization of Naphthalene-Degrading Pseudomonas Species Isolated from Pollutant-Contaminated Sites: Oxidative Stress During their Growth on Naphthalene

  • Kang, Yoon-Suk;Kim, Young-Jun;Jeon, Che-Ok;Park, Woo-Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1819-1825
    • /
    • 2006
  • Four naphthalene-degrading bacteria (Pseudomonas sp. strains O1, W1, As1, and G1) were isolated feom pollutant-contaminated sites. Examination of their substrate utilization and analyses of key naphthalene-catabolic regulatory genes revealed that the pathway and regulation of naphthalene-degradation in all four strains resemble those of NAH7 from P. putida G7. Superoxide anion production, superoxide dismutase activity, and catalase activity during their growth on naphthalene-amended medium increased significantly, compared with those with glucose-amended medium. Addition of ascorbate, an antioxidant, or ferrous iron ($Fe^{2+}$) increased the growth rates of all tested microorganisms on naphthalene. Northern blot and HPLC analyses showed that both nahA gene expression and naphthalene degradation increased under those conditions. Our data suggest that naphthalene degradation can impose severe oxidative stress, and defenses against oxidative stress would play an important role in the metabolism of naphthalene.

Isolation and Characterization of Pseudomonas putida N3 Degrading Naphthalene (Naphthalene을 분해하는 Pseudomonas putida N3의 분리 및 특성)

  • 고영희;하일호;배경숙
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.3
    • /
    • pp.199-204
    • /
    • 1988
  • A strain capable of growth on naphthalene minimal medium was isolated from soil by selective enrichment culture and identified as Pseudomonas putida N3 according to its morphological and physiological characteristics. The optimum pH and temperature for growth of the isolate were 7.0 and 3$0^{\circ}C$, respectively. This strain was resistant to ampicillin, chloramphenicol, kanamycin and streptomycin but. sensitive to tetracycline and rifampicin. Of the naphthalene related compounds, 1, 5-dihydroxynaphthalene was more easily utilized than naphthalene due to its solubility. And catechol was degraded through meta-cleavage pathway. A 110 Kb plasmid which encodes for a single set of enzymes responsible for the degradation of naphthalene was obtained.

  • PDF

Energy Transfer between Calixarene and Naphthalene

  • Kook, Seong-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.8
    • /
    • pp.1111-1115
    • /
    • 2002
  • The photoluminescence of calixarene crystals has been studied as functions of temperature, time, and concentration. The vibronic bands shift to longer wavelength and become significantly sharper as temperature decreases. The experimental results r eveal that the structural transformation occur during the annealing process. Time-resolved spectra of calixarene at 12 K are monitored. Spectral features, which demonstrate characteristic of energy transfer processes, are not observed. The depopulation of excited state density is mainly controlled by unimolecular decay process dominating other decay processes. The lifetime was found to be 2.6 $\pm$ 0.1 ns. For the case of calixarene mixed with naphthalene, the fluorescence spectrum shows that the band centered at 340 nm lies 2840 $cm^{-1}$ below the relatively broad 310 nm band found for calixarene crystals. The spectra also exhibit that the emission intensity increases with increasing calixarene concentration. The results are evident that the calixarene emission is quenched by the naphthalene. Phosphorescence of calixarene mixed with naphthalene crystals is observed to determine whether the emission is due to naphthalene. The phosphorescence peaks were compared with the ground-state vibrational frequencies of naphthalene and found to be in good agreement. The results indicate that inter-molecular energy transfer occurs between calixarene and naphthalene.

Removal of Sorbed Naphthalene from Soils Using Nonionic Surfactant (비이온성 계면활성제를 이용한 토양내 수착된 나프탈렌의 제거)

  • Ha, Dong-Hyun;Shin, Won-Sik;Oh, Sang-Hwa;Song, Dong-Ik;Ko, Seok-Oh
    • Journal of Environmental Science International
    • /
    • v.19 no.5
    • /
    • pp.549-563
    • /
    • 2010
  • The environmental behaviors of polycyclic aromatic hydrocarbons (PAHs) are mainly governed by their solubility and partitioning properties on soil media in a subsurface system. In surfactant-enhanced remediation (SER) systems, surfactant plays a critical role in remediation. In this study, sorptive behaviors and partitioning of naphthalene in soils in the presence of surfactants were investigated. Silica and kaolin with low organic carbon contents and a natural soil with relatively higher organic carbon content were used as model sorbents. A nonionic surfactant, Triton X-100, was used to enhance dissolution of naphthalene. Sorption kinetics of naphthalene onto silica, kaolin and natural soil were investigated and analyzed using several kinetic models. The two compartment first-order kinetic model (TCFOKM) was fitted better than the other models. From the results of TCFOKM, the fast sorption coefficient of naphthalene ($k_1$) was in the order of silica > kaolin > natural soil, whereas the slow sorbing fraction ($k_2$) was in the reverse order. Sorption isotherms of naphthalene were linear with organic carbon content ($f_{oc}$) in soils, while those of Triton X-100 were nonlinear and correlated with CEC and BET surface area. Sorption of Triton X-100 was higher than that of naphthalene in all soils. The effectiveness of a SER system depends on the distribution coefficient ($K_D$) of naphthalene between mobile and immobile phases. In surfactant-sorbed soils, naphthalene was adsorbed onto the soil surface and also partitioned onto the sorbed surfactant. The partition coefficient ($K_D$) of naphthalene increased with surfactant concentration. However, the $K_D$ decreased as the surfactant concentration increased above CMC in all soils. This indicates that naphthalene was partitioned competitively onto both sorbed surfactants (immobile phase) and micelles (mobile phase). For the mineral soils such as silica and kaolin, naphthalene removal by mobile phase would be better than that by immobile phase because the distribution of naphthalene onto the micelles ($K_{mic}$) increased with the nonionic surfactant concentration (Triton X-100). For the natural soil with relatively higher organic carbon content, however, the naphthalene removal by immobile phase would be better than that by mobile phase, because a high amount of Triton X-100 could be sorbed onto the natural soil and the sorbed surfactant also could sorb the relatively higher amount of naphthalene.

A Study on Separation of Naphthalene from Naphthalene and 2-Methylnaphthalene Mixture by Melt and Solution Crystallization (용액과 용융결정화에 의한 나프탈렌과 2-메틸나프탈렌 혼합물로부터 나프탈렌의 분리에 관한 연구)

  • Kim, Sung-Il;Jeong, Kwang-Eun;Chae, Ho-Jeong;Jeong, Soon-Yong;Kim, Chul-Ung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.232-239
    • /
    • 2008
  • Separation of naphthalene from naphthalene and 2-methylnaphthalene mixture has been studied by layered melt and solution crystallization using ethylalcohol. Purity and yield of naphthalene depended mainly on the cooling rate: The effective distribution coefficient ($K_{eff}$) as the degree of impurity removal was observed to decrease with the decreasing in cooling rate. Purity of naphthalene can be enhanced to $5{\sim}7%$ by melt crystallization using 90% naphthalene and the purity of naphthalene can be obtained to be 99% up by solution crystallization.

Acute Effects of Naphthalene on Hematologic Properties of flounder (Naphthalene에 노출된 넙치치어의 혈액학적 반응)

  • Lee, Kyoung-Seon;Ryu, Hyang-Mi
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2009.06a
    • /
    • pp.167-169
    • /
    • 2009
  • 넙치 치어에 대한 Naphthalene의 급성독성을 조사하기 위하여 대조구($0{\mu}g/\ell$), 1000, 1800, 3200, 5200, $10000{\mu}g/\ell$의 6개의 Naphthalene 농도구를 실정하여 24시간 동안 노출험을 실시하고 혈액학적 성상을 분석하였다. 넙치치어에 대한 Naphthalene의 24h-$LC_{50}$$2346.19{\mu}g/\ell$를 나타냈다. 넙치의 혈액학적 반응에서 헤마토크리트값은 5600, $10000{\mu}g/\ell$의 농도에서 대조구와 비교하여 유의하게 증가하였고, 글루코스는 $10000{\mu}g/\ell$의 농도에서 유의하게 증가 하였다. 삼투압 농토는 3200, 5600, $10000{\mu}g/\ell$의 농노 구에서 유의하게 증가하였다. 반면, 이온 분석 결과 $Na^+$, $K^+$은 5600 및 $10000{\mu}g/\ell$ Naphthalene 농도구에서 유의하게 증가하였으나 $Cl^-$는 큰 차이를 보이지 않았다.

  • PDF

Genome Analysis of Naphthalene-Degrading Pseudomonas sp. AS1 Harboring the Megaplasmid pAS1

  • Kim, Jisun;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.2
    • /
    • pp.330-337
    • /
    • 2018
  • Polycyclic aromatic hydrocarbons (PAHs), including naphthalene, are widely distributed in nature. Naphthalene has been regarded as a model PAH compound for investigating the mechanisms of bacterial PAH biodegradation. Pseudomonas sp. AS1 isolated from an arseniccontaminated site is capable of growing on various aromatic compounds such as naphthalene, salicylate, and catechol, but not on gentisate. The genome of strain AS1 consists of a 6,126,864 bp circular chromosome and the 81,841 bp circular plasmid pAS1. Pseudomonas sp. AS1 has multiple dioxygenases and related enzymes involved in the degradation of aromatic compounds, which might contribute to the metabolic versatility of this isolate. The pAS1 plasmid exhibits extremely high similarity in size and sequences to the well-known naphthalene-degrading plasmid pDTG1 in Pseudomonas putida strain NCIB 9816-4. Two gene clusters involved in the naphthalene degradation pathway were identified on pAS1. The expression of several nah genes on the plasmid was upregulated by more than 2-fold when naphthalene was used as a sole carbon source. Strains have been isolated at different times and places with different characteristics, but similar genes involved in the degradation of aromatic compounds have been identified on their plasmids, which suggests that the transmissibility of the plasmids might play an important role in the adaptation of the microorganisms to mineralize the compounds.