• Title/Summary/Keyword: Natural Coordinate

Search Result 170, Processing Time 0.028 seconds

Free Vibration Analysis of a Simply-Supported Circular Plate with a Concentric Square Hole by the Independent Coordinate Coupling Method (독립좌표연성법을 이용한 정사각형 구멍을 갖는 단순지지 원판의 자유진동해석)

  • Heo, Seok;Kwak, Moon-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.967-972
    • /
    • 2008
  • This paper presents the free vibration analysis of a circular plate with a concentric square hole. The present problem deals with the numerical calculation of the natural frequencies and mode shapes of vibration of the structure by means of Independent Coordinate Coupling Method (ICCM). In this study, the boundary condition is the edge of the square hole is free and the outer circular plate is simply supported. Due to the geometric abnormality, this analysis does not permit an exact solution. Since the ICCM employs coordinate systems corresponding to each domain independently, the kinetic and potential energy expressions necessary for the Rayleigh-Ritz method can be easily obtained. Lastly, the kinematic relation is imposed. In this way, the eigenvalue problem can be easily set up. The numerical results show the efficacy of the ICCM and changes in natural frequencies and modes due to the square hole size.

  • PDF

The Validity Test of Upper·Forearm Coordinate System and the Exploratory Analysis of the Interactive Effect between Flexion/Extension and Pronation/Supination during Elbow Joint Motion (주관절 운동의 상완·전완좌표계 타당도 및 굴곡/신전과 회내/회외의 상호작용)

  • Kim, Jin-Uk
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.2
    • /
    • pp.117-127
    • /
    • 2010
  • The axes of upper forearm coordinate system have been considered as principal axis of each segment which was component of elbow joint. The purpose of this study was to verify whether the mean direction(principal axis) of instantaneous axes of rotation for pure flexion/extension motion coincided with the flexion/extension axis of upper forearm coordinate system. The same procedure was done for pronation/supination motion. Furthermore, it was tested indirectly that there was an interaction effect between the two rotational motions. The results showed that most segment coordinate axes statistically were not consistent with the mean directions of flexion/extension and pronation/supination axes of rotation. From the results, it would be concluded that the ISB coordinate systems was proved to be a little valid for human movement analysis. There also was an effect of pronation/supination angles on flexion/extension motion.

Combinatory Categorial Grammar for the Syntactic, Semantic, and Discourse Analyses of Coordinate Constructions in Korean (한국어 병렬문의 통사, 의미, 문맥 분석을 위한 결합범주문법)

  • Cho, Hyung-Joon;Park, Jong-Cheol
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.4
    • /
    • pp.448-462
    • /
    • 2000
  • Coordinate constructions in natural language pose a number of difficulties to natural language processing units, due to the increased complexity of syntactic analysis, the syntactic ambiguity of the involved lexical items, and the apparent deletion of predicates in various places. In this paper, we address the syntactic characteristics of the coordinate constructions in Korean from the viewpoint of constructing a competence grammar, and present a version of combinatory categorial grammar for the analysis of coordinate constructions in Korean. We also show how to utilize a unified lexicon in the proposed grammar formalism in deriving the sentential semantics and associated information structures as well, in order to capture the discourse functions of coordinate constructions in Korean. The presented analysis conforms to the common wisdom that coordinate constructions are utilized in language not simply to reduce multiple sentences to a single sentence, but also to convey the information of contrast. Finally, we provide an analysis of sample corpora for the frequency of coordinate constructions in Korean and discuss some problematic cases.

  • PDF

Analysis of the Solidification Process at a Vertical Wall With Thermal Contact Resistance (접촉열저항이 있는 수직벽에서의 응고과정 해석)

  • 이진호;모정하;황기영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.193-201
    • /
    • 1995
  • The role of thermal contact resistance between a casting and a metal mold as well as natural convection in the melt during solidification of a pure metal is numerically studied. Numerical simulation is performed for a rectangular cavity using the coordinate transformation by boundary-fitted coordinate and pure aluminum is used as the phase- change material. The influences of thermal contact resistance on the interface shape and position, solidified volume fraction, temperature field and local heat transfer are investigated.

Free Vibration Analysis of an Annular Plate by the Independent Coordinate Coupling Method (독립좌표연성법을 이용한 원환판의 자유진동해석)

  • Heo, Seok;Kwak, Moon-K.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.5
    • /
    • pp.564-571
    • /
    • 2008
  • This paper is concerned with the free vibration analysis of an annular plate with boundary conditions of simply supported-free, clamped-free and free-free, respectively. Exact solutions for the natural frequency and mode of an annular plate can be obtained by solving the differential equation but other methods such as the Rayleigh-Ritz method and the finite element method can be also used. In this research, we applied the Independent Coordinate Coupling Method(ICCM) to the annular plate and prove that the ICCM can accurately predict the natural frequency and mode shape of the annular plate. The numerical results show that the ICCM can be used effectively for the free vibration problem of plate with a hole compared to the Rayleigh-Ritz method and the finite element method.

Free Vibration Analysis of Rectangular Plate with Multiple Circular Cutouts by Independent Coordinate Coupling Method (독립좌표연성법을 이용한 여러 개의 원형 구멍을 갖는 직사각형 평판의 자유진동해석)

  • Kwak, Moon K.;Song, Myung-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1086-1092
    • /
    • 2007
  • This paper is concerned with the vibration analysis of a rectangular plate with multiple circular holes. On the contrary to the case of rectangular plate with multiple rectangular holes, it is very difficult to perform qualitative analysis on natural vibration characteristics because of geometrical inconsistency. In this paper, we applied the Independent Coordinate Coupling Method(ICCM) to the addressed problem, which was developed to compute natural vibration characteristics of the rectangular plate with a circular hole and proven to be computationally effective. The ICCM is based on Rayleigh-Ritz method but utilizes independent coordinates for each hole domain. By matching the deflection conditions for each hole imposed on the expressions, we can easily derive the reduced mass and stiffness matrices. The resulting equation is then used for the calculation of the eigenvalue problem. The numerical results show the efficacy of the Independent Coordinate Coupling Method.

Free Vibration Analysis of a Simply-supported Circular Plate with a Concentric Square Hole by the Independent Coordinate Coupling Method (독립좌표연성법을 이용한 정사각형 구멍을 갖는 단순지지 원판의 자유진동해석)

  • Heo, Seok;Kwak, Moon-Kyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.2
    • /
    • pp.192-199
    • /
    • 2009
  • This paper presents the free vibration analysis of a circular plate with a concentric square hole. The boundary condition is the edge of the square hole is free and the outer circular plate is simply supported. Due to the geometric abnormality, this analysis does not permit an exact solution. The present problem deals with the numerical calculation of the natural frequencies and mode shapes of vibration of the structure by independent coordinate coupling method(ICCM). The numerical results show the efficacy of the ICCM and changes in natural frequencies and modes due to the square hole size.

Computation of 2-D mixed-mode stress intensity factors by Petrov-Galerkin natural element method

  • Cho, Jin-Rae
    • Structural Engineering and Mechanics
    • /
    • v.56 no.4
    • /
    • pp.589-603
    • /
    • 2015
  • The mixed-mode stress intensity factors of 2-D angled cracks are evaluated by Petrov-Galerkin natural element (PG-NE) method in which Voronoi polygon-based Laplace interpolation functions and CS-FE basis functions are used for the trial and test functions respectively. The interaction integral is implemented in a frame of PG-NE method in which the weighting function defined over a crack-tip integral domain is interpolated by Laplace interpolation functions. Two Cartesian coordinate systems are employed and the displacement, strains and stresses which are solved in the grid-oriented coordinate system are transformed to the other coordinate system aligned to the angled crack. The present method is validated through the numerical experiments with the angled edge and center cracks, and the numerical accuracy is examined with respect to the grid density, crack length and angle. Also, the stress intensity factors obtained by the present method are compared with other numerical methods and the exact solution. It is observed from the numerical results that the present method successfully and accurately evaluates the mixed-mode stress intensity factors of 2-D angled cracks for various crack lengths and crack angles.

Structural Dynamic System Reconstruction for Modal Parameter Estimation

  • Kim, H. Y.;W. Hwang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.150-150
    • /
    • 2000
  • We as modal parameter estimation technique by developing a residual based system reconstruction and using the system matrix coordinate transformation. The modal parameters can be estimated from and residues of the system transfer functions expressed in modal coordinate basis, derived from the state space system matrices. However, for modal parameter estimation of multivariable and order structural systems over broad frequency bands, this non-iterative algorithm gives high accuracy in the natural fre- and damping ratios. From vibration tests on cross-ply and angle-ply composite laminates, the natural frequencies and damping ratios on be estimated using tile coordinates of the structural system reconstructed fro the experimental frequency response. These results are compared with those of finite element analysis and single-degree-of-freedom curve-fitting.

  • PDF

Structural Dynamic System Reconstruction for Model Parameter Estimation

  • Kim, H. Y.;W. Hwang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.527-527
    • /
    • 2000
  • Wean modal parameter estiimation technique by developing a residual based system reconstruction and using the system matrix coordinate transformation. The modal parameters can be estimated from and residues of the system transfer functions expressed in modal coordinate basis, derived from the state space system matrices. However, for modal parameter estimation of mllltivariable and order structural systems over broad frequency bands, this non-iterative algorithm gives high accuracy in the natural fre and damping ratios. From vibration tests on cross-ply and angle-ply composite laminates, the natural frequencies and damping ratios can be estimated using the coordinates of the structural system reconstructed from the experimental frequency response. These results are compared with those of finite element analysis and single-degree-of-freedom curve-fitting..

  • PDF