• Title/Summary/Keyword: Natural energy

Search Result 3,688, Processing Time 0.033 seconds

A Study on the State of the Art and the Future Utilization Prospect of Natural Energy Resources (자연(自然)에너지 자원(資源)의 유효이용(有效利用)과 개발수준(開發水準)에 관한 연구(硏究))

  • Chung, K.S.;Yoo, S.H.
    • Solar Energy
    • /
    • v.16 no.2
    • /
    • pp.15-37
    • /
    • 1996
  • Most of the world's energy demand is met by fossil fuels, mainly petroleum and natural gas. Even though their production is not keeping up with the demand, there are many options before us-solar energy in its direct and indirect forms, nuclear breeders, thermonuclear power, geothermal energy, synthetic fluid fuels, and hydrogen as energy carrier to complement the nonfossil energy sources. But, before these energy alternatives can be utilized, in most cases, it is necessary to conduct extensive research and development work. In order to solve global energy and environmental issues, it is very important to develop and install energy supply systems which utilizes natural energy. The installation of these systems brings the following merits from the viewpoints of energy saving or environmental protection-(a) the positive use of natural energy reduces fossil fuel consumption; and (b) it also prevents environmental degradation. In this paper, the types of natural energy considered is confined to the solar, wind, hydraulic, geothermal and ocean-wave energy. And, the objective of the paper is to describe the state of the art of natural energy and future utilization prospect of them.

  • PDF

Comprehensive energy analysis of natural gas transportation in molecules or in electricity

  • Udaeta, Miguel E.M.;Rigolin, Pascoal H.C.;Burani, Geraldo F.;Galvao, Luiz C.R.
    • Advances in Energy Research
    • /
    • v.2 no.2
    • /
    • pp.61-72
    • /
    • 2014
  • This paper's aim is to do a global evaluation (considering four dimensions: technical-economic, environmental, social and political) in the ways of natural gas transportation (gas pipelines, GNL and GTL) and electric transmission, in order to supply the energy demands of Mato Grosso do Sul, a brazilian state. The transport ways had been compared between itself using a software of decision taking (Decision Lens Suite), which determined a better way for transporting natural gas in this case. In a generalized manner the gas pipeline is the best way of transporting natural gas, therefore it takes advantage in the majority of the analyzed dimensions.

A Study on the trend of Energy Mix and Air Environmental Impact Assessment (비전통가스 개발 확대에 따른 국내외 에너지믹스 동향 및 대기환경영향에 관한 연구)

  • Cho, Hanna;Joo, Hyun Soo;Park, Joo-Yang
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.6
    • /
    • pp.639-648
    • /
    • 2013
  • Unconventional natural gas resources are now estimated to be as large as conventional resources. Unconventional natural gas has became an increasingly important source of energy in the world since the start of this century. The factors that drive natural gas demand and supply point more and more to a future in which natural gas plays greater role in the global energy mix. The expansion of using natural gas will be expected in Korea. This research aims to analyze environmental impacts of expansion of unconventional natural gas. This research was carried out for comparative analysis between global energy mix and Korea energy mix, and developed a case that reflect the changed energy mix due to the expansion of unconventional natural gas in Korea. Also this research evaluate the production of air pollutants and the cost of the damage in power generation sector. The results of this research can be summarized as that natural gas portion of future global energy mix (about 25%) is greater than Korea energy mix (about 12%). This research developed a case that replace 10% energy of power generation sector to natural gas in the 6th demand supply program, reflecting the changed energy mix due to the expansion of natural gas use. In that case, air pollutants would be reduced gradually through 2015 to 2027. In detail, carbon dioxide reduces 22 million tons and environmental damage cost reduces 4500 billion won by 2027.

Investigation of two-phase natural circulation with the SMART-ITL facility for an integral type reactor

  • Jeon, Byong Guk;Yun, Eunkoo;Bae, Hwang;Yang, Jin-Hwa;Ryu, Sung-Uk;Bang, Yun-Gon;Yi, Sung-Jae;Park, Hyun-Sik
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.826-833
    • /
    • 2022
  • A two-phase natural circulation test using SMART integral test loop (SMART-ITL) was conducted to explore thermo-hydraulic phenomena of two-phase natural circulation in the SMART reactor. Specifically, the test examined the natural circulation in the primary loop under a stepwise coolant inventory loss while keeping the core power constant at 5% of the scaled full power. Based on the test results, three flow regimes were observed: single-phase natural circulation (SPNC), two-phase natural circulation (TPNC), and boiler-condenser natural circulation (BCNC). The flow rate remained steady in the SPNC, slightly increased in the TPNC, and dropped abruptly and maintained in the BCNC. Using a natural circulation flow map, the natural circulation characteristic in the SMART-ITL was compared with those in pressurized water reactor simulators. In the SMART-ITL, a BCNC regime appeared instead of siphon condensation and reflux condensation regimes because of the use of once-through steam generators.

Experimental investigation and validation of TASS/SMR-S code for single-phase and two-phase natural circulation tests with SMART-ITL facility

  • Bae, Hwang;Chun, Ji-Han;Yun, Eunkoo;Chung, Young-Jong;Lim, Sung-Won;Park, Hyun-Sik
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.554-564
    • /
    • 2022
  • The natural circulation phenomena occurring in fully integrated nuclear reactors are associated with a unique formation mechanism. The phenomenon results from a structural feature of these reactors involving upward flow from the core, located in the central-bottom region of a single vessel, and downward flow to the steam generator in the annulus region. In this study, to understand the natural circulation in a single vessel involving a multi-layered flow path, single-phase and two-phase natural circulation tests were performed using the SMART-ITL facility, and validation analysis of the TASS/SMR-S code was performed by comparing the corresponding test results. Three single-phase natural circulation tests were sequentially conducted at 15%, 10%, and 5% of full-scaled core-power without RCP operation, following which a two-phase natural circulation test was successively conducted with an artificial discharge of coolant inventory. The simulation capability of the TASS/SMR-S code with respect to the natural circulation phenomena was validated against the test results, and somewhat conservative but reasonably comparative results in terms of overall thermalhydraulic behavior were shown.

Methodology and Application of Avoided Cost Calculation for Natural Gas and District Heating DSM programs (천연가스.지역난방 수요관리 투자사업의 회피비용 산정기법 개발 및 적용)

  • Choi, Bong-Ha;Park, Sang-Yong;Lee, Deok-Ki;Park, Soo-Uk
    • IE interfaces
    • /
    • v.20 no.3
    • /
    • pp.353-362
    • /
    • 2007
  • This paper proposed the calculation method of the avoided cost for natural gas and district heating DSM programs. And the proposed method is applied to real DSM programs. The avoided cost for natural gas consists of commodity avoided cost, supply equipment avoided cost, storage equipment avoided cost, and electric power avoided cost. In case of the district heating, avoided cost consists of heat generation equipment avoided cost, heat energy avoided cost, environment avoided cost, and electric power avoided cost. This method can be used to evaluate the benefit of DSM programs quantitatively in cost. Therefore, this method can contribute to make the cost-effectiveness evaluation system and to operate the DSM programs for natural gas and district heating effectively.

Energy Calibration for Neutron Capture Resonance of Natural Sm by Using 46-MeV Electron Linear Accelerator

  • Lee, Jae-Hong;Lee, Sam-Yol
    • Journal of the Korean Society of Radiology
    • /
    • v.1 no.2
    • /
    • pp.31-35
    • /
    • 2007
  • Energy calibration is important to identify accurate neutron capture resonance energy in the neutron TOF (Time-of-Flight) experiment. In present study, the accurate neutron capture resonance energies of natural Sm were measured by using a 46-MeV electron linear accelerator (linac) at the Research Reactor Institute, Kyoto University(KURRI). The BGO spectrometer were adopted for measurement the prompt capture gamma-ray of the sample. To obtain energy calibration curve, resonance energy of a gold sample used as standard resonance energy Mughabghab's data (From neutron resonance parameters data). Previous data (by Mughabghab) of natural Sm sample have been compared with the present result.

  • PDF

Kinetic Energy Release in the Fragmentation of tert-Butylbenzene Molecular Ions. A Mass-analyzed Ion Kinetic Energy Spectrometric (MIKES) Study

  • Choe, Joong-Chul;Kim, Byung-Joo;Kim, Myung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.2
    • /
    • pp.167-171
    • /
    • 1989
  • Kinetic energy release in the fragmentation of tert-butylbenzene molecular ion was investigated using mass-analyzed ion kinetic energy spectrometry. Method to estimate kinetic energy release distribution (KERD) from experimental peak shape has been explained. Experimental KERD was in good agreement with the calculated result using phase space theory. Effect of dynamical constraint was found to be important.

A study on economical incentives and systems for promoting the eco-friendly village (생태마을의 효과 및 보급에 관한 연구 -백암마을 사례를 중심으로-)

  • Lim, Sang-Hoon
    • KIEAE Journal
    • /
    • v.7 no.1
    • /
    • pp.41-48
    • /
    • 2007
  • This research has been carried out to give economical incentives and to promote for the eco-friendly village. A standard model plan for the Korean eco-village has been prepared by systematically applying the results of the research to Boksoo village, which served as an exemplary model. Plans for promoting the Korean eco-village are finally derived after a series of theoretical assessment of conceptual propositions in harnessing natural elements well suited with man-made structures. The eco-friendly village that this study is to develop harnesses natural energy resources and establishes pleasant living environment for human. It minimizes the unjust load against nature and restrains the excessive consumption of irreplaceable indigenous energy and other natural resources on earth. Paraphrasing, the utilization of natural energy resources in the eco-friendly village features various schemes of the related technologies in energy conservation and exploitation of renewable energies including solar thermal, photovoltaic, daylighting, wind power and etc. The eco-friendly village would definitely make our world more healthier than before by suppressing the emission of green house gases from fossil fuels and ever increasing energy consumption.

The Development Prospect for Gas Hydrate as an Energy Source (에너지원으로서의 가스 하이드레이트 개발 전망)

  • Baek Youngsoon;Lee Jeonghwan;Choi Yangmi;Park Seoungmin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.652-655
    • /
    • 2005
  • Considering the fact that more than $97\%$ of fossil energy resources such as oil and natural gas needed in Korea rely on import, primary concern of the national economy is to secure future energy sources. Gas hydrates. which is non-conventional types of natural gas, distribute worldwide, especially in marine and permafrost Gas hydrates draw great attention recently as a new clean energy resources substituting conventional oil gas due to its presumed huge amount of volume reaching 10 trillion tons of gas and environmentally friendly characteristics. Results of preliminary survey by Korea Gas Corporation (KOGAS) and Korea Institute of Geoscience and Mineral Resources (KIGAM) showed that gas hydrates can be present in deep sea over 1,000m water depth in the East Sea. Gas hydrates can contribute to the rapidly increasing consumption of natural gas in Korea and achieve the self-support target by 2010 with $30\%$ of total natural gas demand. This study presents the potentialities and development prospects of gas hydrate as a future energy source.

  • PDF