• Title/Summary/Keyword: Natural fiber

Search Result 957, Processing Time 0.025 seconds

Effect of Fiber Orientation on Failure Strength Properties of Natural Fiber Reinforced Composites including Adhesive Bonded Joint (접착제 접합된 자연섬유강화 복합재료의 파괴강도 특성에 미치는 섬유 방향의 영향)

  • Yoon, Ho-Chel
    • Journal of Welding and Joining
    • /
    • v.24 no.5
    • /
    • pp.43-48
    • /
    • 2006
  • This paper is concerned with a fracture strength study of composite adhesive lap joints. The tests were carried out on specimen joints manufactured hybrid stacked composites such as the polyester and bamboo natural fiber layer. The main objective of the work was to test the fracture strength using hybrid stacked composites with a polyester and bamboo natural fiber layer. Tensile and peel strength of hybrid stacked composites are tested before appling adhesive bonding. From results, Natural fiber reinforced composites have lower tensile strength than the original polyester. and The load directional orientation and small amount and low thickness of bamboo natural fiber layer have a good effect on the tensile and peel strength of natural fiber reinforced composites. The failure strength of these materials applied adhesive bonding is also affected by fiber orientation and thickness of bamboo natural fiber layer. There for, Fiber orientation of bamboo natural fiber layer have a great effect on the tensile-shear strength of natural fiber reinforced composites including adhesive bonded joints.

Effect of Kenaf Fiber Loading on the Properties of Natural Fiber/Natural Rubber Composites (천연섬유/천연고무 복합재료의 특성에 미치는 Kenaf 섬유함량의 영향)

  • Cho, Yi-Seok;Cho, Dong-Hwan
    • Elastomers and Composites
    • /
    • v.46 no.3
    • /
    • pp.186-194
    • /
    • 2011
  • Natural fiber/natural rubber composites were fabricated by uniformly compounding natural rubber and cellulose- based natural fiber kenaf and then by compression molding. The effect of kenaf fiber content on their vulcanization behavior, hardness, tensile properties, tear strength and static and dynamic properties was investigated. The contents of kenaf fiber in the composites were 0, 5, 10, 15, and 20 phr, compared to natural rubber and additives. The result indicated that various properties of natural rubber depended on the kenaf fiber content. With increasing kenaf fiber content, the torque for vulcanization of natural rubber was increased whereas the vulcanization time was reduced as well. The hardness, tensile modulus and tear strength of kenaf/natural rubber composites were gradually decreased with the fiber content whereas the tensile strength and elongation at break were decreased. Also, with increasing the kenaf fiber content the dynamic property of natural rubber was changed more greatly than the static property. The loss factor, which is closely related with the damping or absorption of the energy given to natural rubber, was proportionally increased with the fiber content.

Effect of Natural Jute Fiber on Bond between Polyolefin Based Macro Fiber and Cement Matrix (폴리올레핀계 매크로 섬유와 시멘트 경화체의 부착특성에 미치는 천연마섬유의 효과)

  • Lee, Jin-Hyung;Park, Chan-Gi
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3A
    • /
    • pp.251-260
    • /
    • 2011
  • In this study, the effect of natural jute fiber volume fraction on the bond characteristics of polyolefin based macro fiber in natural jute fiber reinforced cement composites, including bond strength, interface toughness, and microstructure analysis are presented. The experimental results on polyolefin based macro fiber pullout test of different conditions are reported. Natural jute fiber volume fractions ranging from 0.1% to 0.2% are used in the mix proportions. Pullout tests are conducted to measure the bond characteristics of polyolefin based macro fiber from natural jute fiber reinforced cement composites. Test results are found that the incorporation of natural jute fiber can effectively enhance the polyolefin based macro fiber-cement matrix interfacial properties. The bond strength and interface toughness between polyolefin based macro fiber and natural jute fiber reinforced cement composites increases with the volume fraction of natural jute fiber. The microstructural observation confirms the findings on the interface bond mechanism drawn from the fiber pullout test results.

A Study of the Filter Properties of Natural Fiber Drain (천연마섬유 배수재의 필터특성에 관한 연구)

  • 이광민;장연수;김수삼;고경환
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.313-319
    • /
    • 1999
  • The properties of natural fiber filter are evaluated using laboratory experiments to find out the possibility of natural fiber drain as a substitute material of plastic board drain Experiments performed for natural fiber filter are effective opening size, permeability and clogging, Three filters were used in the experiment, which are constituted with the filter of different densities encircled with wefts and warps. The results were compared with those for the filter of MD88-80.

  • PDF

Effect of Spew Fillet on Failure Strength Properties of Natural Fiber Reinforced Composites Including Adhesive Bonded Joints (접착제 접합된 자연섬유강화 복합재료의 파괴강도 특성에 미치는 접착제 필릿의 영향)

  • Yoon Ho-Chel;Choi Jun-Yong;Kim Yong-Jig;Lim Jae-Kyoo
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.67-71
    • /
    • 2005
  • This paper is concerned with a study on fracture strength of composites in an adhesive single lap joint. The tests were carried out on joint specimens made with hybrid stacked composites consisting of the polyester and bamboo natural fiber layer. The main objective of this work was to evaluate the fracture properties adjacent to adhesive bonded joint of natural fiber reinforced composite specimens. From the results, natural fiber reinforced composites have lower tensile strength than the original polyester. But tensile-shear strength of natural fiber reinforced composites with bamboo layer far from adhesive bond is as high as that of the original polyester adhesive bonded joints. Spew filet at the end of the overlap reduced the stress concentration at the bonded area. Spew fillet and position of bamboo natural fiber layer have a peat effect on the tensile-shear strength of natural fiber reinforced composites including adhesive bonded joints.

Effect of Fiber Orientation on Failure Strength Properties of Natural Fiber Reinforced Composites including Adhesive Bonded Joints (접착제 접합된 자연섬유강화 복합재료의 파괴 강도특성에 미치는 섬유방향의 영향)

  • Im, Jae-Gyu;Yun, Ho-Cheol;Lee, Sang-Yong;Renliang, Wang
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.94-96
    • /
    • 2005
  • This paper is concerned with a fracture strength study of composite adhesive lap joints. The tensile and peel tests were carried out on specimen manufactured hybrid stacked composites such as the polyester and bamboo natural fiber layer. The main objective of the work was to test the failure strength of adhesive bonded joints using hybrid stacked composites with a polyester and bamboo natural fiber layer adjacent to the fiber orientation. From results, the load directional orientation, small amount and low thickness of bamboo natural fiber layer have a good effect on the tensile and peel strength of natural fiber reinforced composites. and these characters are have a great influence on fracture strength and failure shape of adhesive bonded joints using hybrid stacked composites in the difference of fiber orientation.

  • PDF

Strength Characteristics of Soil Cement Reinforced by Natural Hair Fiber

  • Son, Moorak;Lee, Jaeyong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.4
    • /
    • pp.17-26
    • /
    • 2018
  • This study systematically examines the changes in the compressive and tensile strength of soil cement reinforced by natural hair fiber, which is regularly produced from human. Extensive experimental tests of various test specimens have been carried out in a laboratory. Several factors are considered, including the soil type, amount of cement, amount of fiber, fiber length, loading type, and curing age. The test results indicate that both the compressive and tensile strengths are significantly affected by the fiber, either increasing or decreasing depending on the conditions. The increase in tensile strength is significant in the sand-based soil cement due to the tensile resistance of the fiber which is interlocked with the surrounding soil or cement particles. The natural fiber provides a larger strain to failure due to its extensibility, which allows greater deformation. Based on the test results, natural hair fibers can be an effective and environmentally friendly way to improve soil ground subjected to tensile loading, such as an embankment slope, road subgrade, or landfill, thus reducing the cost for cement and waste treatment. The study results provide a useful information of better understanding the mechanical behavior of natural hair fiber in soil cement and the practical use of waste materials in civil engineering. The findings can be practically applied for improving earth structures under tensile loading.

Polypropylene-Natural Fiber Composites: Rheological Properties during Mixing and Thermal Properties (폴리프로필렌-천연섬유 복합재료의 혼합시 유변학적 물성 및 열적 특성)

  • Kim, Sam-Jung;Yoo, Chong Sun;Kim, Gue-Hyun;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.9 no.4
    • /
    • pp.24-29
    • /
    • 2008
  • Polypropylene-natural fiber composites have been prepared and their rheological properties during mixing and thermal properties were investigated. Two types of natural fibers (cotton fiber and wood fiber) were compared. On increasing fiber contents, the torque values of composites were increased, where the cotton fiber exhibited higher increase in torques. The torque values of composites were higher as the MI of PP decreased. X-ray diffraction and differential scanning calorimetry results showed an increase in the crystallization temperature but a decrease of crystallinity of the PP/natural fiber composites on increasing fiber contents.

  • PDF

Strength Characteristics of Mortar with Lime Composites and Natural Fiber (천연섬유와 석회복합체의 모르터 강도 성상에 관한 연구)

  • Hwang, Hey Zoo;Kim, Tae Hoon;Yang, Jun Hyuk
    • KIEAE Journal
    • /
    • v.10 no.6
    • /
    • pp.153-158
    • /
    • 2010
  • The objective of this study was to investigate the strength characteristics of mortar with lime composites using natural fiber or superplasticizer. Lime composites consist of lime and pozzolan materials. Flow according to adding natural fiber decreased and mortar proportion added cellulose fiber showed a higher strength characterisitics than other natural fiber. but compressive and shear strength in use of superplasticizer is not effective largely. In addition, lime composites, as an environment-friendly material, may help reduse $CO_2$, and save the energy. also this materials can be recycled in environmental aspects. afterwards, further in-depth studies will be necessary for cracks and durability with respect to its wide different applications, in applying it as a construction material.