• Title/Summary/Keyword: Natural refrigerant

Search Result 100, Processing Time 0.028 seconds

Analysis of high efficiency natural gas liquefaction cycle with mixed refrigerant (고효율 혼합 냉매 천연 가스 액화 공정에 대한 고찰)

  • Baek, Seung-Whan;Hwang, Gyu-Wan;Jeong, Sang-Kwon
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.181-185
    • /
    • 2008
  • The new concept for liquefaction of natural gas has been designed and simulated in this paper. Conventional liquefaction cycles are usually composed with Joule-Thomson valves at lower temperature refrigerant cycle. The new concept of natural gas liquefaction is discussed. The main difference with conventional liquefaction process is the presence of the turbine at low temperature of MR (mixed refrigerant) cycle. The turbine acts as expander but also as an energy generator. This generated energy is provided to the compressor which consumes energy to pressurize refrigerants. The composition of the mixed refrigerant is investigated in this study. Components of the refrigerant are methane, propane and nitrogen. Composition for new process is traced with Aspen HYSYS software. LNG heat exchangers are analyzed for the new process. Heating and cooling curves in heat exchangers were also analyzed.

  • PDF

Condensing Performance Evaluation in Smooth and Micro-Fin Tubes for Natural Mixture Refrigerant (Propane/Butane) (프로판/부탄 혼합자연냉매의 평활관과 마이크로핀관 내의 응축성능평가)

  • Lee Sang-Mu;Lee Joo-Dong;Park Byung-Duck
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.9
    • /
    • pp.816-823
    • /
    • 2005
  • This paper deals with the heat exchange performance prediction of a counter flow type double-tube condenser for natural refrigerant mixtures composed of Propane/n-Butane or Propane/i-Butane in a smooth tube and a micro-fin tube. The local characteristics of heat transfer, mass transfer and pressure drop are calculated using a prediction method developed by the authors. The total pressure drop and the overall heat transfer coefficient are also evaluated on various heat exchange conditions. The calculated results of the natural refrigerant mixtures are compared with HCFC22. In conclusion, natural refrigerant mixtures composed of Propane/n-Butane or Propane/i-Butane are appropriate candidates for alternative refrigerant from the viewpoint of heat transfer characteristics.

Friction and Wear of the Scroll Compressor Sliding Surfaces in the Natural Refrigerant $CO_2$ Environment (자연냉매 $CO_2$환경에서 스크롤 압축기 구동부의 마찰 마멸특성 평가)

  • 오세두;문재용;조성욱;이인주;김철우;이영제
    • Tribology and Lubricants
    • /
    • v.19 no.3
    • /
    • pp.146-150
    • /
    • 2003
  • The natural refrigerant $CO_2$has attracted as an alternative refrigerant currently used in air conditioning system, which has high global warming potential. In this study, the tribological characteristics of the sliding surfaces between a fixed scroll and an orbiting scroll of the scroll compressor were investigated in $CO_2$/ POE mixed environment. The pin-on-disk type sliding tests were carried out under the various sliding speeds, normal loads. surface roughness, and pressures. During the test, friction forces, wear amount and surface temperature were monitored.

Development of a High Efficient LNG Refrigerated Truck using Natural Refrigerant CO2 (자연냉매 CO2를 이용한 고효율 LNG 냉동 트럭의 개발)

  • Jeong, Se Jin;Kwak, Hun Sub;Min, Ho Ki
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.6
    • /
    • pp.77-82
    • /
    • 2020
  • In this paper, we developed a cooling system for the refrigeration truck using natural carbon dioxide refrigerant which is attracting attention as an environmentally-friendly refrigerant. We developed a high efficient environmentally-friendly refrigerated truck that converted the existing diesel vehicle into an LNG vehicle to improve emissions of truck and improved the efficiency of the cooling system by utilizing a heat of LNG vaporization. The COP of refrigerated truck system was increased 144%.

The Flow Characteristics of Pressure Control Valves for Natural Refrigerants (천연 냉매용 압력제어밸브의 유동특성 평가)

  • Kang, Hyo-Lim;Park, Hyung-Joon;Kim, Ga-Eun;Han, Seung-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.3
    • /
    • pp.51-56
    • /
    • 2020
  • Research into natural refrigerants that use CO2, instead of chlorofluorocarbons and hydrofluorocarbons, has increased due to the environmental problems caused by ozone depletion. CO2 refrigerants are more environmentally friendly than conventional refrigerants because they have better latent heat of evaporation and heat transfer efficiency properties. However, they have very low critical temperatures and require high design pressures; therefore, pressure control valves, which reduce the pressure of the CO2 refrigerant to a safe level and apply it to the refrigerant air conditioning system, are necessary to secure stability against high pressure. In the present study, we evaluated the flow characteristics and valve performance of the pressure control valve using a CO2 refrigerant by measuring the pressure, velocity, and flow coefficient. In addition, we examined the applied forces caused by the internal pressure from the highly pressurized CO2 refrigerant and required thrust characteristics.

A Simulation Study on the Cascade Refrigeration Cycle for the Liquefaction of Natural Gas [1] (천연가스 액화를 위한 캐스케이드 냉동사이클의 전산모사에 대한 연구 [1])

  • Kim, So-Hee;Cho, Jung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.552-558
    • /
    • 2011
  • In this paper, simulation works for a cascade refrigeration cycle using propane, ethylene and methane as a refrigerant have been performed for the liquefaction of natural gas using Peng-Robinson equation of state built-in PRO/II with PROVISION release 8.3. The natural gas feed compositions were supplied from Korea Gas Corporation and the flow rate was assumed to be 5.0 million tons per annual. Supply temperature for propane refrigerant was fixed as $-40^{\circ}C$, that for ethylene refrigerant as $-95^{\circ}C$, and that for methane refrigerant as $-155^{\circ}C$. Natural gas was finally cooled and liquefied to $-162^{\circ}C$ by Joule-Thomson expansion. Conclusively, 91.64% by mole of the natural gas liquefaction ratio was obtained through a cascade refrigeration cycle and Joule-Thomson expansion.

Analysis of the Control Variables for Natural Gas Liquefied Process Using Mixed Refrigerant (혼합냉매를 이용한 천연가스 액화공정의 제어변수 분석)

  • Lee, Jae Yong;Kim, Mun-Hyun;Park, Chan-Cook
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.4
    • /
    • pp.51-57
    • /
    • 2013
  • The process of liquefied natural gas is less then $-160^{\circ}C$ to natural gas by cooling at atmospheric pressure. When control strategy was made, one of the most significant is analysis of process. It is important to understand the control variable change according to manipulated variable change. In this study, we experiment natural gas liquefied process using C3MR(Propane Pre-cooled Mixed Refrigerant) process by BSU(Bench Scale Unit). We analyzed the change of refrigerant temperature and natural gas temperature according to the change of refrigerant flow rate so as to search an influence flow rate according to adjust each manipulated variables. One of the manipulated variable affected a number of control variables, but were able to confirm a control variable with a large response.

Case Studies for Optimizing Energy Efficiency of Propane Cycle Pressure Levels on C3-MR Process (C3-MR 공정의 프로판 사이클 압력 레벨에 따른 에너지효율 최적화를 위한 사례연구)

  • Lee, In-Kyu;Tak, Kyung-Jae;Lim, Won-Sub;Moon, Il;Kim, Hak-Sung;Choi, Kwang-Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.6
    • /
    • pp.38-43
    • /
    • 2011
  • Natural gas liquefaction process runs under cryogenic condition, and it spends large amount of energy. Minimizing energy consumption of natural gas liquefaction process is an important issue because of its physical characteristics. Among many kinds of natural gas liquefaction processes, C3-MR(Propane Pre-cooled Mixed Refrigerant) process uses two kind of refrigerants. One is the propane as the pure refrigerant(PR) and the other is the mixed refrigerant(MR). In this study, to find the optimal compressing level, propane cycle is simulated on different pressure level. The case study result shows relationship between energy consumption and pressure level. As a result, the conclusion is that at a higher pressure level, process consumes lower energy. At 5 pressure-levels, energy consumption is 23.7% lower than 3 pressure-levels.

Analysis of Pure Refrigerant Cycle Design on C3MR Process through Driver Selection (동력 공급 장치 선택을 통한 C3MR 공정의 순수냉매 사이클 설계 분석)

  • Lee, Inkyu;Tak, Kyungjae;Lim, Wonsub;Moon, Il;Kim, Haksung;Choi, Kwangho
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.3
    • /
    • pp.27-32
    • /
    • 2013
  • Natural gas liquefaction process which is operated under cryogenic condition spends large amount of energy. Most of energy in the natural gas liquefaction process is consumed by compressors. Therefore, minimizing energy consumption of compressors is an important issue in process design and operation. Among various natural gas liquefaction processes, propane pre-cooled mixed refrigerant (C3MR) process consists of mixed refrigerant system and pure refrigerant system. In this study, to find the optimal design of pure refrigerant system, pure refrigerant cycle is simulated on different number of pressure levels and the necessary energy of each design is compared. After that, the driver selection model is applied to analyse each processes, which has different number of equipments, in terms of cost. As the result, the design using many equipments spends lower energy. Using this result, this study suggests standard of process design selection by the cost term.

Performance Evaluation of Double-Tube Condenser using Smooth and Micro-Fin Tubes for Natural Mixture Refrigerant (Propane/Butane)

  • Lee, Sang-Mu;Lee, Joo-Dong;Koyama, Shigeru;Park, Byung-Duck
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.1
    • /
    • pp.25-33
    • /
    • 2007
  • The investigation has been made into the prediction of heat exchange performance of a counter flow type double-tube condenser for natural refrigerant mixtures composed of Propane/n-Butane or Propane/i-Butane in a smooth tube and micro-fin tube. Under various heat transfer conditions, mass flux, pressure drop and heat transfer coefficient of the mixed refrigerants were calculated using a prediction method, when the length of condensing tube, total heat transfer rate, mass flux and outlet temperature of coolant were maintained constant. Also, the predicted results were compared with those of HCFC22. The results showed that the mixed refrigerants of Propane/n-Butane or Propane/i-Butane could be substituted for HCFC22, while the pressure drop and overall heat transfer coefficient of the refrigerants were evaluated together.